Age | Commit message (Collapse) | Author | Files | Lines |
|
Currently do_notify_resume() lives in arch/arm64/kernel/signal.c, but it would
make more sense for it to live in entry-common.c as it handles more than
signals, and is coupled with the rest of the return-to-userspace sequence (e.g.
with unusual DAIF masking that matches the exception return requirements).
Move do_notify_resume() to entry-common.c.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20240206123848.1696480-3-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Itaru Kitayama <itaru.kitayama@linux.dev>
|
|
'for-next/iss2-decode', 'for-next/kselftest', 'for-next/misc', 'for-next/feat_mops', 'for-next/module-alloc', 'for-next/sysreg', 'for-next/cpucap', 'for-next/acpi', 'for-next/kdump', 'for-next/acpi-doc', 'for-next/doc' and 'for-next/tpidr2-fix', remote-tracking branch 'arm64/for-next/perf' into for-next/core
* arm64/for-next/perf:
docs: perf: Fix warning from 'make htmldocs' in hisi-pmu.rst
docs: perf: Add new description for HiSilicon UC PMU
drivers/perf: hisi: Add support for HiSilicon UC PMU driver
drivers/perf: hisi: Add support for HiSilicon H60PA and PAv3 PMU driver
perf: arm_cspmu: Add missing MODULE_DEVICE_TABLE
perf/arm-cmn: Add sysfs identifier
perf/arm-cmn: Revamp model detection
perf/arm_dmc620: Add cpumask
dt-bindings: perf: fsl-imx-ddr: Add i.MX93 compatible
drivers/perf: imx_ddr: Add support for NXP i.MX9 SoC DDRC PMU driver
perf/arm_cspmu: Decouple APMT dependency
perf/arm_cspmu: Clean up ACPI dependency
ACPI/APMT: Don't register invalid resource
perf/arm_cspmu: Fix event attribute type
perf: arm_cspmu: Set irq affinitiy only if overflow interrupt is used
drivers/perf: hisi: Don't migrate perf to the CPU going to teardown
drivers/perf: apple_m1: Force 63bit counters for M2 CPUs
perf/arm-cmn: Fix DTC reset
perf: qcom_l2_pmu: Make l2_cache_pmu_probe_cluster() more robust
perf/arm-cci: Slightly optimize cci_pmu_sync_counters()
* for-next/kpti:
: Simplify KPTI trampoline exit code
arm64: entry: Simplify tramp_alias macro and tramp_exit routine
arm64: entry: Preserve/restore X29 even for compat tasks
* for-next/missing-proto-warn:
: Address -Wmissing-prototype warnings
arm64: add alt_cb_patch_nops prototype
arm64: move early_brk64 prototype to header
arm64: signal: include asm/exception.h
arm64: kaslr: add kaslr_early_init() declaration
arm64: flush: include linux/libnvdimm.h
arm64: module-plts: inline linux/moduleloader.h
arm64: hide unused is_valid_bugaddr()
arm64: efi: add efi_handle_corrupted_x18 prototype
arm64: cpuidle: fix #ifdef for acpi functions
arm64: kvm: add prototypes for functions called in asm
arm64: spectre: provide prototypes for internal functions
arm64: move cpu_suspend_set_dbg_restorer() prototype to header
arm64: avoid prototype warnings for syscalls
arm64: add scs_patch_vmlinux prototype
arm64: xor-neon: mark xor_arm64_neon_*() static
* for-next/iss2-decode:
: Add decode of ISS2 to data abort reports
arm64/esr: Add decode of ISS2 to data abort reporting
arm64/esr: Use GENMASK() for the ISS mask
* for-next/kselftest:
: Various arm64 kselftest improvements
kselftest/arm64: Log signal code and address for unexpected signals
kselftest/arm64: Add a smoke test for ptracing hardware break/watch points
* for-next/misc:
: Miscellaneous patches
arm64: alternatives: make clean_dcache_range_nopatch() noinstr-safe
arm64: hibernate: remove WARN_ON in save_processor_state
arm64/fpsimd: Exit streaming mode when flushing tasks
arm64: mm: fix VA-range sanity check
arm64/mm: remove now-superfluous ISBs from TTBR writes
arm64: consolidate rox page protection logic
arm64: set __exception_irq_entry with __irq_entry as a default
arm64: syscall: unmask DAIF for tracing status
arm64: lockdep: enable checks for held locks when returning to userspace
arm64/cpucaps: increase string width to properly format cpucaps.h
arm64/cpufeature: Use helper for ECV CNTPOFF cpufeature
* for-next/feat_mops:
: Support for ARMv8.8 memcpy instructions in userspace
kselftest/arm64: add MOPS to hwcap test
arm64: mops: allow disabling MOPS from the kernel command line
arm64: mops: detect and enable FEAT_MOPS
arm64: mops: handle single stepping after MOPS exception
arm64: mops: handle MOPS exceptions
KVM: arm64: hide MOPS from guests
arm64: mops: don't disable host MOPS instructions from EL2
arm64: mops: document boot requirements for MOPS
KVM: arm64: switch HCRX_EL2 between host and guest
arm64: cpufeature: detect FEAT_HCX
KVM: arm64: initialize HCRX_EL2
* for-next/module-alloc:
: Make the arm64 module allocation code more robust (clean-up, VA range expansion)
arm64: module: rework module VA range selection
arm64: module: mandate MODULE_PLTS
arm64: module: move module randomization to module.c
arm64: kaslr: split kaslr/module initialization
arm64: kasan: remove !KASAN_VMALLOC remnants
arm64: module: remove old !KASAN_VMALLOC logic
* for-next/sysreg: (21 commits)
: More sysreg conversions to automatic generation
arm64/sysreg: Convert TRBIDR_EL1 register to automatic generation
arm64/sysreg: Convert TRBTRG_EL1 register to automatic generation
arm64/sysreg: Convert TRBMAR_EL1 register to automatic generation
arm64/sysreg: Convert TRBSR_EL1 register to automatic generation
arm64/sysreg: Convert TRBBASER_EL1 register to automatic generation
arm64/sysreg: Convert TRBPTR_EL1 register to automatic generation
arm64/sysreg: Convert TRBLIMITR_EL1 register to automatic generation
arm64/sysreg: Rename TRBIDR_EL1 fields per auto-gen tools format
arm64/sysreg: Rename TRBTRG_EL1 fields per auto-gen tools format
arm64/sysreg: Rename TRBMAR_EL1 fields per auto-gen tools format
arm64/sysreg: Rename TRBSR_EL1 fields per auto-gen tools format
arm64/sysreg: Rename TRBBASER_EL1 fields per auto-gen tools format
arm64/sysreg: Rename TRBPTR_EL1 fields per auto-gen tools format
arm64/sysreg: Rename TRBLIMITR_EL1 fields per auto-gen tools format
arm64/sysreg: Convert OSECCR_EL1 to automatic generation
arm64/sysreg: Convert OSDTRTX_EL1 to automatic generation
arm64/sysreg: Convert OSDTRRX_EL1 to automatic generation
arm64/sysreg: Convert OSLAR_EL1 to automatic generation
arm64/sysreg: Standardise naming of bitfield constants in OSL[AS]R_EL1
arm64/sysreg: Convert MDSCR_EL1 to automatic register generation
...
* for-next/cpucap:
: arm64 cpucap clean-up
arm64: cpufeature: fold cpus_set_cap() into update_cpu_capabilities()
arm64: cpufeature: use cpucap naming
arm64: alternatives: use cpucap naming
arm64: standardise cpucap bitmap names
* for-next/acpi:
: Various arm64-related ACPI patches
ACPI: bus: Consolidate all arm specific initialisation into acpi_arm_init()
* for-next/kdump:
: Simplify the crashkernel reservation behaviour of crashkernel=X,high on arm64
arm64: add kdump.rst into index.rst
Documentation: add kdump.rst to present crashkernel reservation on arm64
arm64: kdump: simplify the reservation behaviour of crashkernel=,high
* for-next/acpi-doc:
: Update ACPI documentation for Arm systems
Documentation/arm64: Update ACPI tables from BBR
Documentation/arm64: Update references in arm-acpi
Documentation/arm64: Update ARM and arch reference
* for-next/doc:
: arm64 documentation updates
Documentation/arm64: Add ptdump documentation
* for-next/tpidr2-fix:
: Fix the TPIDR2_EL0 register restoring on sigreturn
kselftest/arm64: Add a test case for TPIDR2 restore
arm64/signal: Restore TPIDR2 register rather than memory state
|
|
filter_irq_stacks() is supposed to cut entries which are related irq entries
from its call stack.
And in_irqentry_text() which is called by filter_irq_stacks()
uses __irqentry_text_start/end symbol to find irq entries in callstack.
But it doesn't work correctly as without "CONFIG_FUNCTION_GRAPH_TRACER",
arm64 kernel doesn't include gic_handle_irq which is entry point of arm64 irq
between __irqentry_text_start and __irqentry_text_end as we discussed in below link.
https://lore.kernel.org/all/CACT4Y+aReMGLYua2rCLHgFpS9io5cZC04Q8GLs-uNmrn1ezxYQ@mail.gmail.com/#t
This problem can makes unintentional deep call stack entries especially
in KASAN enabled situation as below.
[ 2479.383395]I[0:launcher-loader: 1719] Stack depot reached limit capacity
[ 2479.383538]I[0:launcher-loader: 1719] WARNING: CPU: 0 PID: 1719 at lib/stackdepot.c:129 __stack_depot_save+0x464/0x46c
[ 2479.385693]I[0:launcher-loader: 1719] pstate: 624000c5 (nZCv daIF +PAN -UAO +TCO -DIT -SSBS BTYPE=--)
[ 2479.385724]I[0:launcher-loader: 1719] pc : __stack_depot_save+0x464/0x46c
[ 2479.385751]I[0:launcher-loader: 1719] lr : __stack_depot_save+0x460/0x46c
[ 2479.385774]I[0:launcher-loader: 1719] sp : ffffffc0080073c0
[ 2479.385793]I[0:launcher-loader: 1719] x29: ffffffc0080073e0 x28: ffffffd00b78a000 x27: 0000000000000000
[ 2479.385839]I[0:launcher-loader: 1719] x26: 000000000004d1dd x25: ffffff891474f000 x24: 00000000ca64d1dd
[ 2479.385882]I[0:launcher-loader: 1719] x23: 0000000000000200 x22: 0000000000000220 x21: 0000000000000040
[ 2479.385925]I[0:launcher-loader: 1719] x20: ffffffc008007440 x19: 0000000000000000 x18: 0000000000000000
[ 2479.385969]I[0:launcher-loader: 1719] x17: 2065726568207475 x16: 000000000000005e x15: 2d2d2d2d2d2d2d20
[ 2479.386013]I[0:launcher-loader: 1719] x14: 5d39313731203a72 x13: 00000000002f6b30 x12: 00000000002f6af8
[ 2479.386057]I[0:launcher-loader: 1719] x11: 00000000ffffffff x10: ffffffb90aacf000 x9 : e8a74a6c16008800
[ 2479.386101]I[0:launcher-loader: 1719] x8 : e8a74a6c16008800 x7 : 00000000002f6b30 x6 : 00000000002f6af8
[ 2479.386145]I[0:launcher-loader: 1719] x5 : ffffffc0080070c8 x4 : ffffffd00b192380 x3 : ffffffd0092b313c
[ 2479.386189]I[0:launcher-loader: 1719] x2 : 0000000000000001 x1 : 0000000000000004 x0 : 0000000000000022
[ 2479.386231]I[0:launcher-loader: 1719] Call trace:
[ 2479.386248]I[0:launcher-loader: 1719] __stack_depot_save+0x464/0x46c
[ 2479.386273]I[0:launcher-loader: 1719] kasan_save_stack+0x58/0x70
[ 2479.386303]I[0:launcher-loader: 1719] save_stack_info+0x34/0x138
[ 2479.386331]I[0:launcher-loader: 1719] kasan_save_free_info+0x18/0x24
[ 2479.386358]I[0:launcher-loader: 1719] ____kasan_slab_free+0x16c/0x170
[ 2479.386385]I[0:launcher-loader: 1719] __kasan_slab_free+0x10/0x20
[ 2479.386410]I[0:launcher-loader: 1719] kmem_cache_free+0x238/0x53c
[ 2479.386435]I[0:launcher-loader: 1719] mempool_free_slab+0x1c/0x28
[ 2479.386460]I[0:launcher-loader: 1719] mempool_free+0x7c/0x1a0
[ 2479.386484]I[0:launcher-loader: 1719] bvec_free+0x34/0x80
[ 2479.386514]I[0:launcher-loader: 1719] bio_free+0x60/0x98
[ 2479.386540]I[0:launcher-loader: 1719] bio_put+0x50/0x21c
[ 2479.386567]I[0:launcher-loader: 1719] f2fs_write_end_io+0x4ac/0x4d0
[ 2479.386594]I[0:launcher-loader: 1719] bio_endio+0x2dc/0x300
[ 2479.386622]I[0:launcher-loader: 1719] __dm_io_complete+0x324/0x37c
[ 2479.386650]I[0:launcher-loader: 1719] dm_io_dec_pending+0x60/0xa4
[ 2479.386676]I[0:launcher-loader: 1719] clone_endio+0xf8/0x2f0
[ 2479.386700]I[0:launcher-loader: 1719] bio_endio+0x2dc/0x300
[ 2479.386727]I[0:launcher-loader: 1719] blk_update_request+0x258/0x63c
[ 2479.386754]I[0:launcher-loader: 1719] scsi_end_request+0x50/0x304
[ 2479.386782]I[0:launcher-loader: 1719] scsi_io_completion+0x88/0x160
[ 2479.386808]I[0:launcher-loader: 1719] scsi_finish_command+0x17c/0x194
[ 2479.386833]I[0:launcher-loader: 1719] scsi_complete+0xcc/0x158
[ 2479.386859]I[0:launcher-loader: 1719] blk_mq_complete_request+0x4c/0x5c
[ 2479.386885]I[0:launcher-loader: 1719] scsi_done_internal+0xf4/0x1e0
[ 2479.386910]I[0:launcher-loader: 1719] scsi_done+0x14/0x20
[ 2479.386935]I[0:launcher-loader: 1719] ufshcd_compl_one_cqe+0x578/0x71c
[ 2479.386963]I[0:launcher-loader: 1719] ufshcd_mcq_poll_cqe_nolock+0xc8/0x150
[ 2479.386991]I[0:launcher-loader: 1719] ufshcd_intr+0x868/0xc0c
[ 2479.387017]I[0:launcher-loader: 1719] __handle_irq_event_percpu+0xd0/0x348
[ 2479.387044]I[0:launcher-loader: 1719] handle_irq_event_percpu+0x24/0x74
[ 2479.387068]I[0:launcher-loader: 1719] handle_irq_event+0x74/0xe0
[ 2479.387091]I[0:launcher-loader: 1719] handle_fasteoi_irq+0x174/0x240
[ 2479.387118]I[0:launcher-loader: 1719] handle_irq_desc+0x7c/0x2c0
[ 2479.387147]I[0:launcher-loader: 1719] generic_handle_domain_irq+0x1c/0x28
[ 2479.387174]I[0:launcher-loader: 1719] gic_handle_irq+0x64/0x158
[ 2479.387204]I[0:launcher-loader: 1719] call_on_irq_stack+0x2c/0x54
[ 2479.387231]I[0:launcher-loader: 1719] do_interrupt_handler+0x70/0xa0
[ 2479.387258]I[0:launcher-loader: 1719] el1_interrupt+0x34/0x68
[ 2479.387283]I[0:launcher-loader: 1719] el1h_64_irq_handler+0x18/0x24
[ 2479.387308]I[0:launcher-loader: 1719] el1h_64_irq+0x68/0x6c
[ 2479.387332]I[0:launcher-loader: 1719] blk_attempt_bio_merge+0x8/0x170
[ 2479.387356]I[0:launcher-loader: 1719] blk_mq_attempt_bio_merge+0x78/0x98
[ 2479.387383]I[0:launcher-loader: 1719] blk_mq_submit_bio+0x324/0xa40
[ 2479.387409]I[0:launcher-loader: 1719] __submit_bio+0x104/0x138
[ 2479.387436]I[0:launcher-loader: 1719] submit_bio_noacct_nocheck+0x1d0/0x4a0
[ 2479.387462]I[0:launcher-loader: 1719] submit_bio_noacct+0x618/0x804
[ 2479.387487]I[0:launcher-loader: 1719] submit_bio+0x164/0x180
[ 2479.387511]I[0:launcher-loader: 1719] f2fs_submit_read_bio+0xe4/0x1c4
[ 2479.387537]I[0:launcher-loader: 1719] f2fs_mpage_readpages+0x888/0xa4c
[ 2479.387563]I[0:launcher-loader: 1719] f2fs_readahead+0xd4/0x19c
[ 2479.387587]I[0:launcher-loader: 1719] read_pages+0xb0/0x4ac
[ 2479.387614]I[0:launcher-loader: 1719] page_cache_ra_unbounded+0x238/0x288
[ 2479.387642]I[0:launcher-loader: 1719] do_page_cache_ra+0x60/0x6c
[ 2479.387669]I[0:launcher-loader: 1719] page_cache_ra_order+0x318/0x364
[ 2479.387695]I[0:launcher-loader: 1719] ondemand_readahead+0x30c/0x3d8
[ 2479.387722]I[0:launcher-loader: 1719] page_cache_sync_ra+0xb4/0xc8
[ 2479.387749]I[0:launcher-loader: 1719] filemap_read+0x268/0xd24
[ 2479.387777]I[0:launcher-loader: 1719] f2fs_file_read_iter+0x1a0/0x62c
[ 2479.387806]I[0:launcher-loader: 1719] vfs_read+0x258/0x34c
[ 2479.387831]I[0:launcher-loader: 1719] ksys_pread64+0x8c/0xd0
[ 2479.387857]I[0:launcher-loader: 1719] __arm64_sys_pread64+0x48/0x54
[ 2479.387881]I[0:launcher-loader: 1719] invoke_syscall+0x58/0x158
[ 2479.387909]I[0:launcher-loader: 1719] el0_svc_common+0xf0/0x134
[ 2479.387935]I[0:launcher-loader: 1719] do_el0_svc+0x44/0x114
[ 2479.387961]I[0:launcher-loader: 1719] el0_svc+0x2c/0x80
[ 2479.387985]I[0:launcher-loader: 1719] el0t_64_sync_handler+0x48/0x114
[ 2479.388010]I[0:launcher-loader: 1719] el0t_64_sync+0x190/0x194
[ 2479.388038]I[0:launcher-loader: 1719] Kernel panic - not syncing: kernel: panic_on_warn set ...
So let's set __exception_irq_entry with __irq_entry as a default.
Applying this patch, we can see gic_hande_irq is included in Systemp.map as below.
* Before
ffffffc008010000 T __do_softirq
ffffffc008010000 T __irqentry_text_end
ffffffc008010000 T __irqentry_text_start
ffffffc008010000 T __softirqentry_text_start
ffffffc008010000 T _stext
ffffffc00801066c T __softirqentry_text_end
ffffffc008010670 T __entry_text_start
* After
ffffffc008010000 T __irqentry_text_start
ffffffc008010000 T _stext
ffffffc008010000 t gic_handle_irq
ffffffc00801013c t gic_handle_irq
ffffffc008010294 T __irqentry_text_end
ffffffc008010298 T __do_softirq
ffffffc008010298 T __softirqentry_text_start
ffffffc008010904 T __softirqentry_text_end
ffffffc008010908 T __entry_text_start
Signed-off-by: Youngmin Nam <youngmin.nam@samsung.com>
Signed-off-by: SEO HOYOUNG <hy50.seo@samsung.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20230424010436.779733-1-youngmin.nam@samsung.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The memory copy/set instructions added as part of FEAT_MOPS can take an
exception (e.g. page fault) part-way through their execution and resume
execution afterwards.
If however the task is re-scheduled and execution resumes on a different
CPU, then the CPU may take a new type of exception to indicate this.
This is because the architecture allows two options (Option A and Option
B) to implement the instructions and a heterogeneous system can have
different implementations between CPUs.
In this case the OS has to reset the registers and restart execution
from the prologue instruction. The algorithm for doing this is provided
as part of the Arm ARM.
Add an exception handler for the new exception and wire it up for
userspace tasks.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20230509142235.3284028-8-kristina.martsenko@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
In preparation for marking panic_smp_self_stop() __noreturn across the
kernel, first mark the arm64 implementation of cpu_park_loop() and
related functions __noreturn.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/55787d3193ea3e295ccbb097abfab0a10ae49d45.1681342859.git.jpoimboe@kernel.org
|
|
In general, exceptions taken from EL1 need to be handled separately from
exceptions taken from EL0, as the logic to handle the two cases can be
significantly divergent, and exceptions taken from EL1 typically have
more stringent requirements on locking and instrumentation.
Subsequent patches will rework the way EL1 UNDEFs are handled in order
to address longstanding soundness issues with instrumentation and RCU.
In preparation for that rework, this patch splits the existing
do_undefinstr() handler into separate do_el0_undef() and do_el1_undef()
handlers.
Prior to this patch, do_undefinstr() was marked with NOKPROBE_SYMBOL(),
preventing instrumentation via kprobes. However, do_undefinstr() invokes
other code which can be instrumented, and:
* For UNDEFINED exceptions taken from EL0, there is no risk of recursion
within kprobes. Therefore it is safe for do_el0_undef to be
instrumented with kprobes, and it does not need to be marked with
NOKPROBE_SYMBOL().
* For UNDEFINED exceptions taken from EL1, either:
(a) The exception is has been taken when manipulating SSBS; these cases
are limited and do not occur within code that can be invoked
recursively via kprobes. Hence, in these cases instrumentation
with kprobes is benign.
(b) The exception has been taken for an unknown reason, as other than
manipulating SSBS we do not expect to take UNDEFINED exceptions
from EL1. Any handling of these exception is best-effort.
... and in either case, marking do_el1_undef() with NOKPROBE_SYMBOL()
isn't sufficient to prevent recursion via kprobes as functions it
calls (including die()) are instrumentable via kprobes.
Hence, it's not worthwhile to mark do_el1_undef() with
NOKPROBE_SYMBOL(). The same applies to do_el1_bti() and do_el1_fpac(),
so their NOKPROBE_SYMBOL() annotations are also removed.
Aside from the new instrumentability, there should be no functional
change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Joey Gouly <joey.gouly@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20221019144123.612388-3-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Currently do_sysinstr() and do_cp15instr() are marked with
NOKPROBE_SYMBOL(). However, these are only called for exceptions taken
from EL0, and there is no risk of recursion in kprobes, so this is not
necessary.
Remove the NOKPROBE_SYMBOL() annotation, and rename the two functions to
more clearly indicate that these are solely for exceptions taken from
EL0, better matching the names used by the lower level entry points in
entry-common.c.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Joey Gouly <joey.gouly@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20221019144123.612388-2-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
* for-next/misc:
: Miscellaneous patches
arm64/kprobe: Optimize the performance of patching single-step slot
ARM64: reloc_test: add __init/__exit annotations to module init/exit funcs
arm64/mm: fold check for KFENCE into can_set_direct_map()
arm64: uaccess: simplify uaccess_mask_ptr()
arm64: mte: move register initialization to C
arm64: mm: handle ARM64_KERNEL_USES_PMD_MAPS in vmemmap_populate()
arm64: dma: Drop cache invalidation from arch_dma_prep_coherent()
arm64: support huge vmalloc mappings
arm64: spectre: increase parameters that can be used to turn off bhb mitigation individually
arm64: run softirqs on the per-CPU IRQ stack
arm64: compat: Implement misalignment fixups for multiword loads
|
|
If a BTI exception is taken from EL1, the entry code will treat this as
an unhandled exception and will panic() the kernel. This is inconsistent
with the way we handle FPAC exceptions, which have a dedicated handler
and only necessarily kill the thread from which the exception was taken
from, and we don't log all the information that could be relevant to
debug the issue.
The code in do_bti() has:
BUG_ON(!user_mode(regs));
... and it seems like the intent was to call this for EL1 BTI
exceptions, as with FPAC, but this was omitted due to an oversight.
This patch adds separate EL0 and EL1 BTI exception handlers, with the
latter calling die() directly to report the original context the BTI
exception was taken from. This matches our handling of FPAC exceptions.
Prior to this patch, a BTI failure is reported as:
| Unhandled 64-bit el1h sync exception on CPU0, ESR 0x0000000034000002 -- BTI
| CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-rc3-00131-g7d937ff0221d-dirty #9
| Hardware name: linux,dummy-virt (DT)
| pstate: 20400809 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=-c)
| pc : test_bti_callee+0x4/0x10
| lr : test_bti_caller+0x1c/0x28
| sp : ffff80000800bdf0
| x29: ffff80000800bdf0 x28: 0000000000000000 x27: 0000000000000000
| x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
| x23: ffff80000a2b8000 x22: 0000000000000000 x21: 0000000000000000
| x20: ffff8000099fa5b0 x19: ffff800009ff7000 x18: fffffbfffda37000
| x17: 3120676e696d7573 x16: 7361202c6e6f6974 x15: 0000000041a90000
| x14: 0040000000000041 x13: 0040000000000001 x12: ffff000001a90000
| x11: fffffbfffda37480 x10: 0068000000000703 x9 : 0001000040000000
| x8 : 0000000000090000 x7 : 0068000000000f03 x6 : 0060000000000f83
| x5 : ffff80000a2b6000 x4 : ffff0000028d0000 x3 : ffff800009f78378
| x2 : 0000000000000000 x1 : 0000000040210000 x0 : ffff8000080257e4
| Kernel panic - not syncing: Unhandled exception
| CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-rc3-00131-g7d937ff0221d-dirty #9
| Hardware name: linux,dummy-virt (DT)
| Call trace:
| dump_backtrace.part.0+0xcc/0xe0
| show_stack+0x18/0x5c
| dump_stack_lvl+0x64/0x80
| dump_stack+0x18/0x34
| panic+0x170/0x360
| arm64_exit_nmi.isra.0+0x0/0x80
| el1h_64_sync_handler+0x64/0xd0
| el1h_64_sync+0x64/0x68
| test_bti_callee+0x4/0x10
| smp_cpus_done+0xb0/0xbc
| smp_init+0x7c/0x8c
| kernel_init_freeable+0x128/0x28c
| kernel_init+0x28/0x13c
| ret_from_fork+0x10/0x20
With this patch applied, a BTI failure is reported as:
| Internal error: Oops - BTI: 0000000034000002 [#1] PREEMPT SMP
| Modules linked in:
| CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-rc3-00132-g0ad98265d582-dirty #8
| Hardware name: linux,dummy-virt (DT)
| pstate: 20400809 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=-c)
| pc : test_bti_callee+0x4/0x10
| lr : test_bti_caller+0x1c/0x28
| sp : ffff80000800bdf0
| x29: ffff80000800bdf0 x28: 0000000000000000 x27: 0000000000000000
| x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
| x23: ffff80000a2b8000 x22: 0000000000000000 x21: 0000000000000000
| x20: ffff8000099fa5b0 x19: ffff800009ff7000 x18: fffffbfffda37000
| x17: 3120676e696d7573 x16: 7361202c6e6f6974 x15: 0000000041a90000
| x14: 0040000000000041 x13: 0040000000000001 x12: ffff000001a90000
| x11: fffffbfffda37480 x10: 0068000000000703 x9 : 0001000040000000
| x8 : 0000000000090000 x7 : 0068000000000f03 x6 : 0060000000000f83
| x5 : ffff80000a2b6000 x4 : ffff0000028d0000 x3 : ffff800009f78378
| x2 : 0000000000000000 x1 : 0000000040210000 x0 : ffff800008025804
| Call trace:
| test_bti_callee+0x4/0x10
| smp_cpus_done+0xb0/0xbc
| smp_init+0x7c/0x8c
| kernel_init_freeable+0x128/0x28c
| kernel_init+0x28/0x13c
| ret_from_fork+0x10/0x20
| Code: d50323bf d53cd040 d65f03c0 d503233f (d50323bf)
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Alexandru Elisei <alexandru.elisei@arm.com>
Cc: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220913101732.3925290-6-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
If an FPAC exception is taken from EL1, the entry code will call
do_ptrauth_fault(), where due to:
BUG_ON(!user_mode(regs))
... the kernel will report a problem within do_ptrauth_fault() rather
than reporting the original context the FPAC exception was taken from.
The pt_regs and ESR value reported will be from within
do_ptrauth_fault() and the code dump will be for the BRK in BUG_ON(),
which isn't sufficient to debug the cause of the original exception.
This patch makes the reporting better by having separate EL0 and EL1
FPAC exception handlers, with the latter calling die() directly to
report the original context the FPAC exception was taken from.
Note that we only need to prevent kprobes of the EL1 FPAC handler, since
the EL0 FPAC handler cannot be called recursively.
For consistency with do_el0_svc*(), I've named the split functions
do_el{0,1}_fpac() rather than do_el{0,1}_ptrauth_fault(). I've also
clarified the comment to not imply there are casues other than FPAC
exceptions.
Prior to this patch FPAC exceptions are reported as:
| kernel BUG at arch/arm64/kernel/traps.c:517!
| Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP
| Modules linked in:
| CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-rc3-00130-g9c8a180a1cdf-dirty #12
| Hardware name: FVP Base RevC (DT)
| pstate: 00400009 (nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : do_ptrauth_fault+0x3c/0x40
| lr : el1_fpac+0x34/0x54
| sp : ffff80000a3bbc80
| x29: ffff80000a3bbc80 x28: ffff0008001d8000 x27: 0000000000000000
| x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
| x23: 0000000020400009 x22: ffff800008f70fa4 x21: ffff80000a3bbe00
| x20: 0000000072000000 x19: ffff80000a3bbcb0 x18: fffffbfffda37000
| x17: 3120676e696d7573 x16: 7361202c6e6f6974 x15: 0000000081a90000
| x14: 0040000000000041 x13: 0040000000000001 x12: ffff000001a90000
| x11: fffffbfffda37480 x10: 0068000000000703 x9 : 0001000080000000
| x8 : 0000000000090000 x7 : 0068000000000f03 x6 : 0060000000000783
| x5 : ffff80000a3bbcb0 x4 : ffff0008001d8000 x3 : 0000000072000000
| x2 : 0000000000000000 x1 : 0000000020400009 x0 : ffff80000a3bbcb0
| Call trace:
| do_ptrauth_fault+0x3c/0x40
| el1h_64_sync_handler+0xc4/0xd0
| el1h_64_sync+0x64/0x68
| test_pac+0x8/0x10
| smp_init+0x7c/0x8c
| kernel_init_freeable+0x128/0x28c
| kernel_init+0x28/0x13c
| ret_from_fork+0x10/0x20
| Code: 97fffe5e a8c17bfd d50323bf d65f03c0 (d4210000)
With this patch applied FPAC exceptions are reported as:
| Internal error: Oops - FPAC: 0000000072000000 [#1] PREEMPT SMP
| Modules linked in:
| CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-rc3-00132-g78846e1c4757-dirty #11
| Hardware name: FVP Base RevC (DT)
| pstate: 20400009 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : test_pac+0x8/0x10
| lr : 0x0
| sp : ffff80000a3bbe00
| x29: ffff80000a3bbe00 x28: 0000000000000000 x27: 0000000000000000
| x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
| x23: ffff80000a2c8000 x22: 0000000000000000 x21: 0000000000000000
| x20: ffff8000099fa5b0 x19: ffff80000a007000 x18: fffffbfffda37000
| x17: 3120676e696d7573 x16: 7361202c6e6f6974 x15: 0000000081a90000
| x14: 0040000000000041 x13: 0040000000000001 x12: ffff000001a90000
| x11: fffffbfffda37480 x10: 0068000000000703 x9 : 0001000080000000
| x8 : 0000000000090000 x7 : 0068000000000f03 x6 : 0060000000000783
| x5 : ffff80000a2c6000 x4 : ffff0008001d8000 x3 : ffff800009f88378
| x2 : 0000000000000000 x1 : 0000000080210000 x0 : ffff000001a90000
| Call trace:
| test_pac+0x8/0x10
| smp_init+0x7c/0x8c
| kernel_init_freeable+0x128/0x28c
| kernel_init+0x28/0x13c
| ret_from_fork+0x10/0x20
| Code: d50323bf d65f03c0 d503233f aa1f03fe (d50323bf)
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Alexandru Elisei <alexandru.elisei@arm.com>
Cc: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220913101732.3925290-5-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Currently, bug_handler() and kasan_handler() call die() with '0' as the
'err' value, whereas die_kernel_fault() passes the ESR_ELx value.
For consistency, this patch ensures we always pass the ESR_ELx value to
die(). As this is only called for exceptions taken from kernel mode,
there should be no user-visible change as a result of this patch.
For UNDEFINED exceptions, I've had to modify do_undefinstr() and its
callers to pass the ESR_ELx value. In all cases the ESR_ELx value had
already been read and was available.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Alexandru Elisei <alexandru.elisei@arm.com>
Cc: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220913101732.3925290-4-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The 32-bit ARM kernel implements fixups on behalf of user space when
using LDM/STM or LDRD/STRD instructions on addresses that are not 32-bit
aligned. This is not something that is supported by the architecture,
but was done anyway to increase compatibility with user space software,
which mostly targeted x86 at the time and did not care about aligned
accesses.
This feature is one of the remaining impediments to being able to switch
to 64-bit kernels on 64-bit capable hardware running 32-bit user space,
so let's implement it for the arm64 compat layer as well.
Note that the intent is to implement the exact same handling of
misaligned multi-word loads and stores as the 32-bit kernel does,
including what appears to be missing support for user space programs
that rely on SETEND to switch to a different byte order and back. Also,
like the 32-bit ARM version, we rely on the faulting address reported by
the CPU to infer the memory address, instead of decoding the instruction
fully to obtain this information.
This implementation is taken from the 32-bit ARM tree, with all pieces
removed that deal with instructions other than LDRD/STRD and LDM/STM, or
that deal with alignment exceptions taken in kernel mode.
Cc: debian-arm@lists.debian.org
Cc: Vagrant Cascadian <vagrant@debian.org>
Cc: Riku Voipio <riku.voipio@iki.fi>
Cc: Steve McIntyre <steve@einval.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/r/20220701135322.3025321-1-ardb@kernel.org
[catalin.marinas@arm.com: change the option to 'default n']
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
* for-next/esr-elx-64-bit:
: Treat ESR_ELx as a 64-bit register.
KVM: arm64: uapi: Add kvm_debug_exit_arch.hsr_high
KVM: arm64: Treat ESR_EL2 as a 64-bit register
arm64: Treat ESR_ELx as a 64-bit register
arm64: compat: Do not treat syscall number as ESR_ELx for a bad syscall
arm64: Make ESR_ELx_xVC_IMM_MASK compatible with assembly
|
|
In the initial release of the ARM Architecture Reference Manual for
ARMv8-A, the ESR_ELx registers were defined as 32-bit registers. This
changed in 2018 with version D.a (ARM DDI 0487D.a) of the architecture,
when they became 64-bit registers, with bits [63:32] defined as RES0. In
version G.a, a new field was added to ESR_ELx, ISS2, which covers bits
[36:32]. This field is used when the Armv8.7 extension FEAT_LS64 is
implemented.
As a result of the evolution of the register width, Linux stores it as
both a 64-bit value and a 32-bit value, which hasn't affected correctness
so far as Linux only uses the lower 32 bits of the register.
Make the register type consistent and always treat it as 64-bit wide. The
register is redefined as an "unsigned long", which is an unsigned
double-word (64-bit quantity) for the LP64 machine (aapcs64 [1], Table 1,
page 14). The type was chosen because "unsigned int" is the most frequent
type for ESR_ELx and because FAR_ELx, which is used together with ESR_ELx
in exception handling, is also declared as "unsigned long". The 64-bit type
also makes adding support for architectural features that use fields above
bit 31 easier in the future.
The KVM hypervisor will receive a similar update in a subsequent patch.
[1] https://github.com/ARM-software/abi-aa/releases/download/2021Q3/aapcs64.pdf
Signed-off-by: Alexandru Elisei <alexandru.elisei@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220425114444.368693-4-alexandru.elisei@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
By default all SME operations in userspace will trap. When this happens
we allocate storage space for the SME register state, set up the SVE
registers and disable traps. We do not need to initialize ZA since the
architecture guarantees that it will be zeroed when enabled and when we
trap ZA is disabled.
On syscall we exit streaming mode if we were previously in it and ensure
that all but the lower 128 bits of the registers are zeroed while
preserving the state of ZA. This follows the aarch64 PCS for SME, ZA
state is preserved over a function call and streaming mode is exited.
Since the traps for SME do not distinguish between streaming mode SVE
and ZA usage if ZA is in use rather than reenabling traps we instead
zero the parts of the SVE registers not shared with FPSIMD and leave SME
enabled, this simplifies handling SME traps. If ZA is not in use then we
reenable SME traps and fall through to normal handling of SVE.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20220419112247.711548-17-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
In `ret_to_user` we perform some conditional work depending on the
thread flags, then perform some IRQ/context tracking which is intended
to balance with the IRQ/context tracking performed in the entry C code.
For simplicity and consistency, it would be preferable to move this all
to C. As a step towards that, this patch moves the conditional work and
IRQ/context tracking into a C helper function. To aid bisectability,
this is called from the `ret_to_user` assembly, and a subsequent patch
will move the call to C code.
As local_daif_mask() handles all necessary tracing and PMR manipulation,
we no longer need to handle this explicitly. As we call
exit_to_user_mode() directly, the `user_enter_irqoff` macro is no longer
used, and can be removed. As enter_from_user_mode() and
exit_to_user_mode() are no longer called from assembly, these can be
made static, and as these are typically very small, they are marked
__always_inline to avoid the overhead of a function call.
For now, enablement of single-step is left in entry.S, and for this we
still need to read the flags in ret_to_user(). It is safe to read this
separately as TIF_SINGLESTEP is not part of _TIF_WORK_MASK.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Joey Gouly <joey.gouly@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Link: https://lore.kernel.org/r/20210802140733.52716-4-mark.rutland@arm.com
[catalin.marinas@arm.com: removed unused gic_prio_kentry_setup macro]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Now that we only call arm64_enter_nmi() and arm64_exit_nmi() from within
entry-common.c, let's make these static to ensure this remains the case.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210607094624.34689-19-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
We'd like to keep all the entry sequencing in entry-common.c, as this
will allow us to ensure this is consistent, and free from any unsound
instrumentation.
Currently handle_bad_stack() performs the NMI entry sequence in traps.c.
Let's split the low-level entry sequence from the reporting, moving the
former to entry-common.c and keeping the latter in traps.c. To make it
clear that reporting function never returns, it is renamed to
panic_bad_stack().
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210607094624.34689-17-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
We have 16 architectural exception vectors, and depending on kernel
configuration we handle 8 or 12 of these with C code, with the remaining
8 or 4 of these handled as special cases in the entry assembly.
It would be nicer if the entry assembly were uniform for all exceptions,
and we deferred any specific handling of the exceptions to C code. This
way the entry assembly can be more easily templated without ifdeffery or
special cases, and it's easier to modify the handling of these cases in
future (e.g. to dump additional registers other context).
This patch reworks the entry code so that we always have a C handler for
every architectural exception vector, with the entry assembly being
completely uniform. We now have to handle exceptions from EL1t and EL1h,
and also have to handle exceptions from AArch32 even when the kernel is
built without CONFIG_COMPAT. To make this clear and to simplify
templating, we rename the top-level exception handlers with a consistent
naming scheme:
asm: <el+sp>_<regsize>_<type>
c: <el+sp>_<regsize>_<type>_handler
.. where:
<el+sp> is `el1t`, `el1h`, or `el0t`
<regsize> is `64` or `32`
<type> is `sync`, `irq`, `fiq`, or `error`
... e.g.
asm: el1h_64_sync
c: el1h_64_sync_handler
... with lower-level handlers simply using "el1" and "compat" as today.
For unexpected exceptions, this information is passed to
__panic_unhandled(), so it can report the specific vector an unexpected
exception was taken from, e.g.
| Unhandled 64-bit el1t sync exception
For vectors we never expect to enter legitimately, the C code is
generated using a macro to avoid code duplication. The exceptions are
handled via __panic_unhandled(), replacing bad_mode() (which is
removed).
The `kernel_ventry` and `entry_handler` assembly macros are updated to
handle the new naming scheme. In theory it should be possible to
generate the entry functions at the same time as the vectors using a
single table, but this will require reworking the linker script to split
the two into separate sections, so for now we have separate tables.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210607094624.34689-15-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
For various reasons we'd like to convert the bulk of arm64's exception
triage logic to C. As a step towards that, this patch converts the EL1
and EL0 IRQ+FIQ triage logic to C.
Separate C functions are added for the native and compat cases so that
in subsequent patches we can handle native/compat differences in C.
Since the triage functions can now call arm64_apply_bp_hardening()
directly, the do_el0_irq_bp_hardening() wrapper function is removed.
Since the user_exit_irqoff macro is now unused, it is removed. The
user_enter_irqoff macro is still used by the ret_to_user code, and
cannot be removed at this time.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210607094624.34689-8-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
When handling IRQ/FIQ exceptions the entry assembly may transition from
a task's stack to a CPU's IRQ stack (and IRQ shadow call stack).
In subsequent patches we want to migrate the IRQ/FIQ triage logic to C,
and as we want to perform some actions on the task stack (e.g. EL1
preemption), we need to switch stacks within the C handler. So that we
can do so, this patch adds a helper to call a function on a CPU's IRQ
stack (and shadow stack as appropriate).
Subsequent patches will make use of the new helper function.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210607094624.34689-7-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
For various reasons we'd like to convert the bulk of arm64's exception
triage logic to C. As a step towards that, this patch converts the EL1
and EL0 SError triage logic to C.
Separate C functions are added for the native and compat cases so that
in subsequent patches we can handle native/compat differences in C.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210607094624.34689-4-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
When building with W=1, GCC complains that we haven't defined prototypes
for a number of non-static functions in entry-common.c:
| arch/arm64/kernel/entry-common.c:203:25: warning: no previous prototype for 'el1_sync_handler' [-Wmissing-prototypes]
| 203 | asmlinkage void noinstr el1_sync_handler(struct pt_regs *regs)
| | ^~~~~~~~~~~~~~~~
| arch/arm64/kernel/entry-common.c:377:25: warning: no previous prototype for 'el0_sync_handler' [-Wmissing-prototypes]
| 377 | asmlinkage void noinstr el0_sync_handler(struct pt_regs *regs)
| | ^~~~~~~~~~~~~~~~
| arch/arm64/kernel/entry-common.c:447:25: warning: no previous prototype for 'el0_sync_compat_handler' [-Wmissing-prototypes]
| 447 | asmlinkage void noinstr el0_sync_compat_handler(struct pt_regs *regs)
| | ^~~~~~~~~~~~~~~~~~~~~~~
... and so automated build systems using W=1 end up sending a number of
emails, despite this not being a real problem as the only callers are in
entry.S where prototypes cannot matter.
For similar cases in entry-common.c we added prototypes to
asm/exception.h, so let's do the same thing here for consistency.
Note that there are a number of other warnings printed with W=1, both
under arch/arm64 and in core code, and this patch only addresses the
cases in entry-common.c. Automated build systems typically filter these
warnings such that they're only reported when changes are made nearby,
so we don't need to solve them all at once.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201214113353.44417-1-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
* arm64/for-next/fixes: (26 commits)
arm64: mte: fix prctl(PR_GET_TAGGED_ADDR_CTRL) if TCF0=NONE
arm64: mte: Fix typo in macro definition
arm64: entry: fix EL1 debug transitions
arm64: entry: fix NMI {user, kernel}->kernel transitions
arm64: entry: fix non-NMI kernel<->kernel transitions
arm64: ptrace: prepare for EL1 irq/rcu tracking
arm64: entry: fix non-NMI user<->kernel transitions
arm64: entry: move el1 irq/nmi logic to C
arm64: entry: prepare ret_to_user for function call
arm64: entry: move enter_from_user_mode to entry-common.c
arm64: entry: mark entry code as noinstr
arm64: mark idle code as noinstr
arm64: syscall: exit userspace before unmasking exceptions
arm64: pgtable: Ensure dirty bit is preserved across pte_wrprotect()
arm64: pgtable: Fix pte_accessible()
ACPI/IORT: Fix doc warnings in iort.c
arm64/fpsimd: add <asm/insn.h> to <asm/kprobes.h> to fix fpsimd build
arm64: cpu_errata: Apply Erratum 845719 to KRYO2XX Silver
arm64: proton-pack: Add KRYO2XX silver CPUs to spectre-v2 safe-list
arm64: kpti: Add KRYO2XX gold/silver CPU cores to kpti safelist
...
# Conflicts:
# arch/arm64/include/asm/exception.h
# arch/arm64/kernel/sdei.c
|
|
Exceptions which can be taken at (almost) any time are consdiered to be
NMIs. On arm64 that includes:
* SDEI events
* GICv3 Pseudo-NMIs
* Kernel stack overflows
* Unexpected/unhandled exceptions
... but currently debug exceptions (BRKs, breakpoints, watchpoints,
single-step) are not considered NMIs.
As these can be taken at any time, kernel features (lockdep, RCU,
ftrace) may not be in a consistent kernel state. For example, we may
take an NMI from the idle code or partway through an entry/exit path.
While nmi_enter() and nmi_exit() handle most of this state, notably they
don't save/restore the lockdep state across an NMI being taken and
handled. When interrupts are enabled and an NMI is taken, lockdep may
see interrupts become disabled within the NMI code, but not see
interrupts become enabled when returning from the NMI, leaving lockdep
believing interrupts are disabled when they are actually disabled.
The x86 code handles this in idtentry_{enter,exit}_nmi(), which will
shortly be moved to the generic entry code. As we can't use either yet,
we copy the x86 approach in arm64-specific helpers. All the NMI
entrypoints are marked as noinstr to prevent any instrumentation
handling code being invoked before the state has been corrected.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-11-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
When built with PROVE_LOCKING, NO_HZ_FULL, and CONTEXT_TRACKING_FORCE
will WARN() at boot time that interrupts are enabled when we call |