Age | Commit message (Collapse) | Author | Files | Lines |
|
asm/unaligned.h is always an include of asm-generic/unaligned.h;
might as well move that thing to linux/unaligned.h and include
that - there's nothing arch-specific in that header.
auto-generated by the following:
for i in `git grep -l -w asm/unaligned.h`; do
sed -i -e "s/asm\/unaligned.h/linux\/unaligned.h/" $i
done
for i in `git grep -l -w asm-generic/unaligned.h`; do
sed -i -e "s/asm-generic\/unaligned.h/linux\/unaligned.h/" $i
done
git mv include/asm-generic/unaligned.h include/linux/unaligned.h
git mv tools/include/asm-generic/unaligned.h tools/include/linux/unaligned.h
sed -i -e "/unaligned.h/d" include/asm-generic/Kbuild
sed -i -e "s/__ASM_GENERIC/__LINUX/" include/linux/unaligned.h tools/include/linux/unaligned.h
|
|
Before commit 721f4a6526da ("mm/memblock: remove empty dummy entry") the
check for non-zero of memblock.reserved.cnt in mmu_init() would always
be true either because memblock.reserved.cnt is initialized to 1 or
because there were memory reservations earlier.
The removal of dummy empty entry in memblock caused this check to fail
because now memblock.reserved.cnt is initialized to 0.
Remove the check for non-zero of memblock.reserved.cnt because it's
perfectly fine to have an empty memblock.reserved array that early in
boot.
Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Mike Rapoport <rppt@kernel.org>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Link: https://lore.kernel.org/r/20240729053327.4091459-1-rppt@kernel.org
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
|
|
Most architectures that implement the old-style mmap() with byte offset
use 'unsigned long' as the type for that offset, but microblaze and
riscv have the off_t type that is shared with userspace, matching the
prototype in include/asm-generic/syscalls.h.
Make this consistent by using an unsigned argument everywhere. This
changes the behavior slightly, as the argument is shifted to a page
number, and an user input with the top bit set would result in a
negative page offset rather than a large one as we use elsewhere.
For riscv, the 32-bit sys_mmap2() definition actually used a custom
type that is different from the global declaration, but this was
missed due to an incorrect type check.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
Patch series "Introduce mseal", v10.
This patchset proposes a new mseal() syscall for the Linux kernel.
In a nutshell, mseal() protects the VMAs of a given virtual memory range
against modifications, such as changes to their permission bits.
Modern CPUs support memory permissions, such as the read/write (RW) and
no-execute (NX) bits. Linux has supported NX since the release of kernel
version 2.6.8 in August 2004 [1]. The memory permission feature improves
the security stance on memory corruption bugs, as an attacker cannot
simply write to arbitrary memory and point the code to it. The memory
must be marked with the X bit, or else an exception will occur.
Internally, the kernel maintains the memory permissions in a data
structure called VMA (vm_area_struct). mseal() additionally protects the
VMA itself against modifications of the selected seal type.
Memory sealing is useful to mitigate memory corruption issues where a
corrupted pointer is passed to a memory management system. For example,
such an attacker primitive can break control-flow integrity guarantees
since read-only memory that is supposed to be trusted can become writable
or .text pages can get remapped. Memory sealing can automatically be
applied by the runtime loader to seal .text and .rodata pages and
applications can additionally seal security critical data at runtime. A
similar feature already exists in the XNU kernel with the
VM_FLAGS_PERMANENT [3] flag and on OpenBSD with the mimmutable syscall
[4]. Also, Chrome wants to adopt this feature for their CFI work [2] and
this patchset has been designed to be compatible with the Chrome use case.
Two system calls are involved in sealing the map: mmap() and mseal().
The new mseal() is an syscall on 64 bit CPU, and with following signature:
int mseal(void addr, size_t len, unsigned long flags)
addr/len: memory range.
flags: reserved.
mseal() blocks following operations for the given memory range.
1> Unmapping, moving to another location, and shrinking the size,
via munmap() and mremap(), can leave an empty space, therefore can
be replaced with a VMA with a new set of attributes.
2> Moving or expanding a different VMA into the current location,
via mremap().
3> Modifying a VMA via mmap(MAP_FIXED).
4> Size expansion, via mremap(), does not appear to pose any specific
risks to sealed VMAs. It is included anyway because the use case is
unclear. In any case, users can rely on merging to expand a sealed VMA.
5> mprotect() and pkey_mprotect().
6> Some destructive madvice() behaviors (e.g. MADV_DONTNEED) for anonymous
memory, when users don't have write permission to the memory. Those
behaviors can alter region contents by discarding pages, effectively a
memset(0) for anonymous memory.
The idea that inspired this patch comes from Stephen Röttger’s work in
V8 CFI [5]. Chrome browser in ChromeOS will be the first user of this
API.
Indeed, the Chrome browser has very specific requirements for sealing,
which are distinct from those of most applications. For example, in the
case of libc, sealing is only applied to read-only (RO) or read-execute
(RX) memory segments (such as .text and .RELRO) to prevent them from
becoming writable, the lifetime of those mappings are tied to the lifetime
of the process.
Chrome wants to seal two large address space reservations that are managed
by different allocators. The memory is mapped RW- and RWX respectively
but write access to it is restricted using pkeys (or in the future ARM
permission overlay extensions). The lifetime of those mappings are not
tied to the lifetime of the process, therefore, while the memory is
sealed, the allocators still need to free or discard the unused memory.
For example, with madvise(DONTNEED).
However, always allowing madvise(DONTNEED) on this range poses a security
risk. For example if a jump instruction crosses a page boundary and the
second page gets discarded, it will overwrite the target bytes with zeros
and change the control flow. Checking write-permission before the discard
operation allows us to control when the operation is valid. In this case,
the madvise will only succeed if the executing thread has PKEY write
permissions and PKRU changes are protected in software by control-flow
integrity.
Although the initial version of this patch series is targeting the Chrome
browser as its first user, it became evident during upstream discussions
that we would also want to ensure that the patch set eventually is a
complete solution for memory sealing and compatible with other use cases.
The specific scenario currently in mind is glibc's use case of loading and
sealing ELF executables. To this end, Stephen is working on a change to
glibc to add sealing support to the dynamic linker, which will seal all
non-writable segments at startup. Once this work is completed, all
applications will be able to automatically benefit from these new
protections.
In closing, I would like to formally acknowledge the valuable
contributions received during the RFC process, which were instrumental in
shaping this patch:
Jann Horn: raising awareness and providing valuable insights on the
destructive madvise operations.
Liam R. Howlett: perf optimization.
Linus Torvalds: assisting in defining system call signature and scope.
Theo de Raadt: sharing the experiences and insight gained from
implementing mimmutable() in OpenBSD.
MM perf benchmarks
==================
This patch adds a loop in the mprotect/munmap/madvise(DONTNEED) to
check the VMAs’ sealing flag, so that no partial update can be made,
when any segment within the given memory range is sealed.
To measure the performance impact of this loop, two tests are developed.
[8]
The first is measuring the time taken for a particular system call,
by using clock_gettime(CLOCK_MONOTONIC). The second is using
PERF_COUNT_HW_REF_CPU_CYCLES (exclude user space). Both tests have
similar results.
The tests have roughly below sequence:
for (i = 0; i < 1000, i++)
create 1000 mappings (1 page per VMA)
start the sampling
for (j = 0; j < 1000, j++)
mprotect one mapping
stop and save the sample
delete 1000 mappings
calculates all samples.
Below tests are performed on Intel(R) Pentium(R) Gold 7505 @ 2.00GHz,
4G memory, Chromebook.
Based on the latest upstream code:
The first test (measuring time)
syscall__ vmas t t_mseal delta_ns per_vma %
munmap__ 1 909 944 35 35 104%
munmap__ 2 1398 1502 104 52 107%
munmap__ 4 2444 2594 149 37 106%
munmap__ 8 4029 4323 293 37 107%
munmap__ 16 6647 6935 288 18 104%
munmap__ 32 11811 12398 587 18 105%
mprotect 1 439 465 26 26 106%
mprotect 2 1659 1745 86 43 105%
mprotect 4 3747 3889 142 36 104%
mprotect 8 6755 6969 215 27 103%
mprotect 16 13748 14144 396 25 103%
mprotect 32 27827 28969 1142 36 104%
madvise_ 1 240 262 22 22 109%
madvise_ 2 366 442 76 38 121%
madvise_ 4 623 751 128 32 121%
madvise_ 8 1110 1324 215 27 119%
madvise_ 16 2127 2451 324 20 115%
madvise_ 32 4109 4642 534 17 113%
The second test (measuring cpu cycle)
syscall__ vmas cpu cmseal delta_cpu per_vma %
munmap__ 1 1790 1890 100 100 106%
munmap__ 2 2819 3033 214 107 108%
munmap__ 4 4959 5271 312 78 106%
munmap__ 8 8262 8745 483 60 106%
munmap__ 16 13099 14116 1017 64 108%
munmap__ 32 23221 24785 1565 49 107%
mprotect 1 906 967 62 62 107%
mprotect 2 3019 3203 184 92 106%
mprotect 4 6149 6569 420 105 107%
mprotect 8 9978 10524 545 68 105%
mprotect 16 20448 21427 979 61 105%
mprotect 32 40972 42935 1963 61 105%
madvise_ 1 434 497 63 63 115%
madvise_ 2 752 899 147 74 120%
madvise_ 4 1313 1513 200 50 115%
madvise_ 8 2271 2627 356 44 116%
madvise_ 16 4312 4883 571 36 113%
madvise_ 32 8376 9319 943 29 111%
Based on the result, for 6.8 kernel, sealing check adds
20-40 nano seconds, or around 50-100 CPU cycles, per VMA.
In addition, I applied the sealing to 5.10 kernel:
The first test (measuring time)
syscall__ vmas t tmseal delta_ns per_vma %
munmap__ 1 357 390 33 33 109%
munmap__ 2 442 463 21 11 105%
munmap__ 4 614 634 20 5 103%
munmap__ 8 1017 1137 120 15 112%
munmap__ 16 1889 2153 263 16 114%
munmap__ 32 4109 4088 -21 -1 99%
mprotect 1 235 227 -7 -7 97%
mprotect 2 495 464 -30 -15 94%
mprotect 4 741 764 24 6 103%
mprotect 8 1434 1437 2 0 100%
mprotect 16 2958 2991 33 2 101%
mprotect 32 6431 6608 177 6 103%
madvise_ 1 191 208 16 16 109%
madvise_ 2 300 324 24 12 108%
madvise_ 4 450 473 23 6 105%
madvise_ 8 753 806 53 7 107%
madvise_ 16 1467 1592 125 8 108%
madvise_ 32 2795 3405 610 19 122%
The second test (measuring cpu cycle)
syscall__ nbr_vma cpu cmseal delta_cpu per_vma %
munmap__ 1 684 715 31 31 105%
munmap__ 2 861 898 38 19 104%
munmap__ 4 1183 1235 51 13 104%
munmap__ 8 1999 2045 46 6 102%
munmap__ 16 3839 3816 -23 -1 99%
munmap__ 32 7672 7887 216 7 103%
mprotect 1 397 443 46 46 112%
mprotect 2 738 788 50 25 107%
mprotect 4 1221 1256 35 9 103%
mprotect 8 2356 2429 72 9 103%
mprotect 16 4961 4935 -26 -2 99%
mprotect 32 9882 10172 291 9 103%
madvise_ 1 351 380 29 29 108%
madvise_ 2 565 615 49 25 109%
madvise_ 4 872 933 61 15 107%
madvise_ 8 1508 1640 132 16 109%
madvise_ 16 3078 3323 245 15 108%
madvise_ 32 5893 6704 811 25 114%
For 5.10 kernel, sealing check adds 0-15 ns in time, or 10-30
CPU cycles, there is even decrease in some cases.
It might be interesting to compare 5.10 and 6.8 kernel
The first test (measuring time)
syscall__ vmas t_5_10 t_6_8 delta_ns per_vma %
munmap__ 1 357 909 552 552 254%
munmap__ 2 442 1398 956 478 316%
munmap__ 4 614 2444 1830 458 398%
munmap__ 8 1017 4029 3012 377 396%
munmap__ 16 1889 6647 4758 297 352%
munmap__ 32 4109 11811 7702 241 287%
mprotect 1 235 439 204 204 187%
mprotect 2 495 1659 1164 582 335%
mprotect 4 741 3747 3006 752 506%
mprotect 8 1434 6755 5320 665 471%
mprotect 16 2958 13748 10790 674 465%
mprotect 32 6431 27827 21397 669 433%
madvise_ 1 191 240 49 49 125%
madvise_ 2 300 366 67 33 122%
madvise_ 4 450 623 173 43 138%
madvise_ 8 753 1110 357 45 147%
madvise_ 16 1467 2127 660 41 145%
madvise_ 32 2795 4109 1314 41 147%
The second test (measuring cpu cycle)
syscall__ vmas cpu_5_10 c_6_8 delta_cpu per_vma %
munmap__ 1 684 1790 1106 1106 262%
munmap__ 2 861 2819 1958 979 327%
munmap__ 4 1183 4959 3776 944 419%
munmap__ 8 1999 8262 6263 783 413%
munmap__ 16 3839 13099 9260 579 341%
munmap__ 32 7672 23221 15549 486 303%
mprotect 1 397 906 509 509 228%
mprotect 2 738 3019 2281 1140 409%
mprotect 4 1221 6149 4929 1232 504%
mprotect 8 2356 9978 7622 953 423%
mprotect 16 4961 20448 15487 968 412%
mprotect 32 9882 40972 31091 972 415%
madvise_ 1 351 434 82 82 123%
madvise_ 2 565 752 186 93 133%
madvise_ 4 872 1313 442 110 151%
madvise_ 8 1508 2271 763 95 151%
madvise_ 16 3078 4312 1234 77 140%
madvise_ 32 5893 8376 2483 78 142%
From 5.10 to 6.8
munmap: added 250-550 ns in time, or 500-1100 in cpu cycle, per vma.
mprotect: added 200-750 ns in time, or 500-1200 in cpu cycle, per vma.
madvise: added 33-50 ns in time, or 70-110 in cpu cycle, per vma.
In comparison to mseal, which adds 20-40 ns or 50-100 CPU cycles, the
increase from 5.10 to 6.8 is significantly larger, approximately ten times
greater for munmap and mprotect.
When I discuss the mm performance with Brian Makin, an engineer who worked
on performance, it was brought to my attention that such performance
benchmarks, which measuring millions of mm syscall in a tight loop, may
not accurately reflect real-world scenarios, such as that of a database
service. Also this is tested using a single HW and ChromeOS, the data
from another HW or distribution might be different. It might be best to
take this data with a grain of salt.
This patch (of 5):
Wire up mseal syscall for all architectures.
Link: https://lkml.kernel.org/r/20240415163527.626541-1-jeffxu@chromium.org
Link: https://lkml.kernel.org/r/20240415163527.626541-2-jeffxu@chromium.org
Signed-off-by: Jeff Xu <jeffxu@chromium.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <groeck@chromium.org>
Cc: Jann Horn <jannh@google.com> [Bug #2]
Cc: Jeff Xu <jeffxu@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Jorge Lucangeli Obes <jorgelo@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muhammad Usama Anjum <usama.anjum@collabora.com>
Cc: Pedro Falcato <pedro.falcato@gmail.com>
Cc: Stephen Röttger <sroettger@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Amer Al Shanawany <amer.shanawany@gmail.com>
Cc: Javier Carrasco <javier.carrasco.cruz@gmail.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Pull microblaze updates from Michal Simek:
- Cleanup code around removed early_printk
* tag 'microblaze-v6.10' of git://git.monstr.eu/linux-2.6-microblaze:
microblaze: Remove early printk call from cpuinfo-static.c
microblaze: Remove gcc flag for non existing early_printk.c file
|
|
CONFIG_BASE_FULL is equivalent to !CONFIG_BASE_SMALL and is enabled by
default: CONFIG_BASE_SMALL is the special case to take care of.
So, remove CONFIG_BASE_FULL and move the config choice to
CONFIG_BASE_SMALL (which defaults to 'n')
For defconfigs explicitely disabling BASE_FULL, explicitely enable
BASE_SMALL.
For defconfigs explicitely enabling BASE_FULL, drop it as it is the
default.
Signed-off-by: Yoann Congal <yoann.congal@smile.fr>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20240505080343.1471198-4-yoann.congal@smile.fr
Signed-off-by: Petr Mladek <pmladek@suse.com>
|
|
Early printk has been removed already that's why also remove calling it.
Similar change has been done in cpuinfo-pvr-full.c by commit cfbd8d1979af
("microblaze: Remove early printk setup").
Fixes: 96f0e6fcc9ad ("microblaze: remove redundant early_printk support")
Signed-off-by: Michal Simek <michal.simek@amd.com>
Link: https://lore.kernel.org/r/2f10db506be8188fa07b6ec331caca01af1b10f8.1712824039.git.michal.simek@amd.com
|
|
early_printk support for removed long time ago but compilation flag for
ftrace still points to already removed file that's why remove that line
too.
Fixes: 96f0e6fcc9ad ("microblaze: remove redundant early_printk support")
Signed-off-by: Michal Simek <michal.simek@amd.com>
Link: https://lore.kernel.org/r/5493467419cd2510a32854e2807bcd263de981a0.1712823702.git.michal.simek@amd.com
|
|
Most architectures only support a single hardcoded page size. In order
to ensure that each one of these sets the corresponding Kconfig symbols,
change over the PAGE_SHIFT definition to the common one and allow
only the hardware page size to be selected.
Acked-by: Guo Ren <guoren@kernel.org>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Acked-by: Stafford Horne <shorne@gmail.com>
Acked-by: Johannes Berg <johannes@sipsolutions.net>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
Pull microblaze updates from Michal Simek:
"Just defconfig updates:
- enable NFS, Marvell phy
- sync defconfig with the latest Kconfig layout"
* tag 'microblaze-v6.8' of git://git.monstr.eu/linux-2.6-microblaze:
microblaze: defconfig: Enable the Marvell phy driver
microblaze: Enable options to mount a rootfs via NFS
microblaze: Align defconfig with latest Kconfig layout
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pull asm-generic cleanups from Arnd Bergmann:
"A series from Baoquan He cleans up the asm-generic/io.h to remove the
ioremap_uc() definition from everything except x86, which still needs
it for pre-PAT systems. This series notably contains a patch from
Jiaxun Yang that converts MIPS to use asm-generic/io.h like every
other architecture does, enabling future cleanups.
Some of my own patches fix -Wmissing-prototype warnings in
architecture specific code across several architectures. This is now
needed as the warning is enabled by default. There are still some
remaining warnings in minor platforms, but the series should catch
most of the widely used ones make them more consistent with one
another.
David McKay fixes a bug in __generic_cmpxchg_local() when this is used
on 64-bit architectures. This could currently only affect parisc64 and
sparc64.
Additional cleanups address from Linus Walleij, Uwe Kleine-König,
Thomas Huth, and Kefeng Wang help reduce unnecessary inconsistencies
between architectures"
* tag 'asm-generic-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
asm-generic: Fix 32 bit __generic_cmpxchg_local
Hexagon: Make pfn accessors statics inlines
ARC: mm: Make virt_to_pfn() a static inline
mips: remove extraneous asm-generic/iomap.h include
sparc: Use $(kecho) to announce kernel images being ready
arm64: vdso32: Define BUILD_VDSO32_64 to correct prototypes
csky: fix arch_jump_label_transform_static override
arch: add do_page_fault prototypes
arch: add missing prepare_ftrace_return() prototypes
arch: vdso: consolidate gettime prototypes
arch: include linux/cpu.h for trap_init() prototype
arch: fix asm-offsets.c building with -Wmissing-prototypes
arch: consolidate arch_irq_work_raise prototypes
hexagon: Remove CONFIG_HEXAGON_ARCH_VERSION from uapi header
asm/io: remove unnecessary xlate_dev_mem_ptr() and unxlate_dev_mem_ptr()
mips: io: remove duplicated codes
arch/*/io.h: remove ioremap_uc in some architectures
mips: add <asm-generic/io.h> including
|
|
Pull header cleanups from Kent Overstreet:
"The goal is to get sched.h down to a type only header, so the main
thing happening in this patchset is splitting out various _types.h
headers and dependency fixups, as well as moving some things out of
sched.h to better locations.
This is prep work for the memory allocation profiling patchset which
adds new sched.h interdepencencies"
* tag 'header_cleanup-2024-01-10' of https://evilpiepirate.org/git/bcachefs: (51 commits)
Kill sched.h dependency on rcupdate.h
kill unnecessary thread_info.h include
Kill unnecessary kernel.h include
preempt.h: Kill dependency on list.h
rseq: Split out rseq.h from sched.h
LoongArch: signal.c: add header file to fix build error
restart_block: Trim includes
lockdep: move held_lock to lockdep_types.h
sem: Split out sem_types.h
uidgid: Split out uidgid_types.h
seccomp: Split out seccomp_types.h
refcount: Split out refcount_types.h
uapi/linux/resource.h: fix include
x86/signal: kill dependency on time.h
syscall_user_dispatch.h: split out *_types.h
mm_types_task.h: Trim dependencies
Split out irqflags_types.h
ipc: Kill bogus dependency on spinlock.h
shm: Slim down dependencies
workqueue: Split out workqueue_types.h
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/lsm
Pull security module updates from Paul Moore:
- Add three new syscalls: lsm_list_modules(), lsm_get_self_attr(), and
lsm_set_self_attr().
The first syscall simply lists the LSMs enabled, while the second and
third get and set the current process' LSM attributes. Yes, these
syscalls may provide similar functionality to what can be found under
/proc or /sys, but they were designed to support multiple,
simultaneaous (stacked) LSMs from the start as opposed to the current
/proc based solutions which were created at a time when only one LSM
was allowed to be active at a given time.
We have spent considerable time discussing ways to extend the
existing /proc interfaces to support multiple, simultaneaous LSMs and
even our best ideas have been far too ugly to support as a kernel
API; after +20 years in the kernel, I felt the LSM layer had
established itself enough to justify a handful of syscalls.
Support amongst the individual LSM developers has been nearly
unanimous, with a single objection coming from Tetsuo (TOMOYO) as he
is worried that the LSM_ID_XXX token concept will make it more
difficult for out-of-tree LSMs to survive. Several members of the LSM
community have demonstrated the ability for out-of-tree LSMs to
continue to exist by picking high/unused LSM_ID values as well as
pointing out that many kernel APIs rely on integer identifiers, e.g.
syscalls (!), but unfortunately Tetsuo's objections remain.
My personal opinion is that while I have no interest in penalizing
out-of-tree LSMs, I'm not going to penalize in-tree development to
support out-of-tree development, and I view this as a necessary step
forward to support the push for expanded LSM stacking and reduce our
reliance on /proc and /sys which has occassionally been problematic
for some container users. Finally, we have included the linux-api
folks on (all?) recent revisions of the patchset and addressed all of
their concerns.
- Add a new security_file_ioctl_compat() LSM hook to handle the 32-bit
ioctls on 64-bit systems problem.
This patch includes support for all of the existing LSMs which
provide ioctl hooks, although it turns out only SELinux actually
cares about the individual ioctls. It is worth noting that while
Casey (Smack) and Tetsuo (TOMOYO) did not give explicit ACKs to this
patch, they did both indicate they are okay with the changes.
- Fix a potential memory leak in the CALIPSO code when IPv6 is disabled
at boot.
While it's good that we are fixing this, I doubt this is something
users are seeing in the wild as you need to both disable IPv6 and
then attempt to configure IPv6 labeled networking via
NetLabel/CALIPSO; that just doesn't make much sense.
Normally this would go through netdev, but Jakub asked me to take
this patch and of all the trees I maintain, the LSM tree seemed like
the best fit.
- Update the LSM MAINTAINERS entry with additional information about
our process docs, patchwork, bug reporting, etc.
I also noticed that the Lockdown LSM is missing a dedicated
MAINTAINERS entry so I've added that to the pull request. I've been
working with one of the major Lockdown authors/contributors to see if
they are willing to step up and assume a Lockdown maintainer role;
hopefully that will happen soon, but in the meantime I'll continue to
look after it.
- Add a handful of mailmap entries for Serge Hallyn and myself.
* tag 'lsm-pr-20240105' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/lsm: (27 commits)
lsm: new security_file_ioctl_compat() hook
lsm: Add a __counted_by() annotation to lsm_ctx.ctx
calipso: fix memory leak in netlbl_calipso_add_pass()
selftests: remove the LSM_ID_IMA check in lsm/lsm_list_modules_test
MAINTAINERS: add an entry for the lockdown LSM
MAINTAINERS: update the LSM entry
mailmap: add entries for Serge Hallyn's dead accounts
mailmap: update/replace my old email addresses
lsm: mark the lsm_id variables are marked as static
lsm: convert security_setselfattr() to use memdup_user()
lsm: align based on pointer length in lsm_fill_user_ctx()
lsm: consolidate buffer size handling into lsm_fill_user_ctx()
lsm: correct error codes in security_getselfattr()
lsm: cleanup the size counters in security_getselfattr()
lsm: don't yet account for IMA in LSM_CONFIG_COUNT calculation
lsm: drop LSM_ID_IMA
LSM: selftests for Linux Security Module syscalls
SELinux: Add selfattr hooks
AppArmor: Add selfattr hooks
Smack: implement setselfattr and getselfattr hooks
...
|
|
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
|
|
Wire up all archs.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Link: https://lore.kernel.org/r/20231025140205.3586473-7-mszeredi@redhat.com
Reviewed-by: Ian Kent <raven@themaw.net>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
The prototype for prepare_ftrace_return() is architecture specific and
can't be in a global header. Since it's normally called from assembly,
it doesn't really need a prototype, but we get a warning if it's missing:
arch/csky/kernel/ftrace.c:147:6: error: no previous prototype for 'prepare_ftrace_return' [-Werror=missing-prototypes]
arch/microblaze/kernel/ftrace.c:22:6: error: no previous prototype for 'prepare_ftrace_return' [-Werror=missing-prototypes]
arch/mips/kernel/ftrace.c:305:6: error: no previous prototype for 'prepare_ftrace_return' [-Werror=missing-prototypes]
Add the prototypes for the three architectures that don't already have
one in asm/ftrace.h.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
some architectures run into a -Wmissing-prototypes warning
for trap_init()
arch/microblaze/kernel/traps.c:21:6: warning: no previous prototype for 'trap_init' [-Wmissing-prototypes]
Include the right header to avoid this consistently, removing
the extra declarations on m68k and x86 that were added as local
workarounds already.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
Enable the marvell phy driver by default as it is commonly
used PHY on multiple microblaze based evaluation boards.
Signed-off-by: Radhey Shyam Pandey <radhey.shyam.pandey@xilinx.com>
Signed-off-by: Michal Simek <michal.simek@amd.com>
Link: https://lore.kernel.org/r/3912fb168671dd5b418da8947ea1c463b554fa86.1698155190.git.michal.simek@amd.com
|
|
Enable the options to mount a rootfs over NFS for microblaze
platforms and also support for automatic configuration of IP addresses
during boot as needed by NFS.
Signed-off-by: Raju Kumar Pothuraju <rajukumar.pothuraju@amd.com>
Reviewed-by: Radhey Shyam Pandey <radhey.shyam.pandey@amd.com>
Signed-off-by: Michal Simek <michal.simek@amd.com>
Link: https://lore.kernel.org/r/d7bc1c93e485e0a6ab2c234a144402b7bd5f77bb.1698155190.git.michal.simek@amd.com
|
|
Sync up patch.
Signed-off-by: Michal Simek <michal.simek@amd.com>
Link: https://lore.kernel.org/r/4414109ba26433f00b4c07f600162462ab6c7a93.1698155190.git.michal.simek@amd.com
|
|
Wireup lsm_get_self_attr, lsm_set_self_attr and lsm_list_modules
system calls.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Cc: linux-api@vger.kernel.org
Reviewed-by: Mickaël Salaün <mic@digikod.net>
[PM: forward ported beyond v6.6 due merge window changes]
Signed-off-by: Paul Moore <paul@paul-moore.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pull ia64 removal and asm-generic updates from Arnd Bergmann:
- The ia64 architecture gets its well-earned retirement as planned,
now that there is one last (mostly) working release that will be
maintained as an LTS kernel.
- The architecture specific system call tables are updated for the
added map_shadow_stack() syscall and to remove references to the
long-gone sys_lookup_dcookie() syscall.
* tag 'asm-generic-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
hexagon: Remove unusable symbols from the ptrace.h uapi
asm-generic: Fix spelling of architecture
arch: Reserve map_shadow_stack() syscall number for all architectures
syscalls: Cleanup references to sys_lookup_dcookie()
Documentation: Drop or replace remaining mentions of IA64
lib/raid6: Drop IA64 support
Documentation: Drop IA64 from feature descriptions
kernel: Drop IA64 support from sig_fault handlers
arch: Remove Itanium (IA-64) architecture
|
|
commit c35559f94ebc ("x86/shstk: Introduce map_shadow_stack syscall")
recently added support for map_shadow_stack() but it is limited to x86
only for now. There is a possibility that other architectures (namely,
arm64 and RISC-V), that are implementing equivalent support for shadow
stacks, might need to add support for it.
Independent of that, reserving arch-specific syscall numbers in the
syscall tables of all architectures is good practice and would help
avoid future conflicts. map_shadow_stack() is marked as a conditional
syscall in sys_ni.c. Adding it to the syscall tables of other
architectures is harmless and would return ENOSYS when exercised.
Note, map_shadow_stack() was assigned #453 during the merge process
since #452 was taken by fchmodat2().
For Powerpc, map it to sys_ni_syscall() as is the norm for Powerpc
syscall tables.
For Alpha, map_shadow_stack() takes up #563 as Alpha still diverges from
the common syscall numbering system in the other architectures.
Link: https://lore.kernel.org/lkml/20230515212255.GA562920@debug.ba.rivosinc.com/
Link: https://lore.kernel.org/lkml/b402b80b-a7c6-4ef0-b977-c0f5f582b78a@sirena.org.uk/
Signed-off-by: Sohil Mehta <sohil.mehta@intel.com>
Reviewed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
commit 'be65de6b03aa ("fs: Remove dcookies support")' removed the
syscall definition for lookup_dcookie. However, syscall tables still
point to the old sys_lookup_dcookie() definition. Update syscall tables
of all architectures to directly point to sys_ni_syscall() instead.
Signed-off-by: Sohil Mehta <sohil.mehta@intel.com>
Reviewed-by: Randy Dunlap <rdunlap@infradead.org>
Acked-by: Namhyung Kim <namhyung@kernel.org> # for perf
Acked-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
Finish off the 'simple' futex2 syscall group by adding
sys_futex_requeue(). Unlike sys_futex_{wait,wake}() its arguments are
too numerous to fit into a regular syscall. As such, use struct
futex_waitv to pass the 'source' and 'destination' futexes to the
syscall.
This syscall implements what was previously known as FUTEX_CMP_REQUEUE
and uses {val, uaddr, flags} for source and {uaddr, flags} for
destination.
This design explicitly allows requeueing between different types of
futex by having a different flags word per uaddr.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Link: https://lore.kernel.org/r/20230921105248.511860556@noisy.programming.kicks-ass.net
|
|
To complement sys_futex_waitv()/wake(), add sys_futex_wait(). This
syscall implements what was previously known as FUTEX_WAIT_BITSET
except it uses 'unsigned long' for the value and bitmask arguments,
takes timespec and clockid_t arguments for the absolute timeout and
uses FUTEX2 flags.
The 'unsigned long' allows FUTEX2_SIZE_U64 on 64bit platforms.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Link: https://lore.kernel.org/r/20230921105248.164324363@noisy.programming.kicks-ass.net
|
|
To complement sys_futex_waitv() add sys_futex_wake(). This syscall
implements what was previously known as FUTEX_WAKE_BITSET except it
uses 'unsigned long' for the bitmask and takes FUTEX2 flags.
The 'unsigned long' allows FUTEX2_SIZE_U64 on 64bit platforms.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Link: https://lore.kernel.org/r/20230921105247.936205525@noisy.programming.kicks-ass.net
|
|
Pull microblaze updates from Michal Simek:
- Cleanup DT headers
- Remove unused zalloc_maybe_bootmem()
- Make virt_to_pfn() a static inline
* tag 'microblaze-v6.6' of git://git.monstr.eu/linux-2.6-microblaze:
microblaze: Make virt_to_pfn() a static inline
microblaze: Remove zalloc_maybe_bootmem()
microblaze: Explicitly include correct DT includes
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 shadow stack support from Dave Hansen:
"This is the long awaited x86 shadow stack support, part of Intel's
Control-flow Enforcement Technology (CET).
CET consists of two related security features: shadow stacks and
indirect branch tracking. This series implements just the shadow stack
part of this feature, and just for userspace.
The main use case for shadow stack is providing protection against
return oriented programming attacks. It works by maintaining a
secondary (shadow) stack using a special memory type that has
protections against modification. When executing a CALL instruction,
the processor pushes the return address to both the normal stack and
to the special permission shadow stack. Upon RET, the processor pops
the shadow stack copy and compares it to the normal stack copy.
For more information, refer to the links below for the earlier
versions of this patch set"
Link: https://lore.kernel.org/lkml/20220130211838.8382-1-rick.p.edgecombe@intel.com/
Link: https://lore.kernel.org/lkml/20230613001108.3040476-1-rick.p.edgecombe@intel.com/
* tag 'x86_shstk_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (47 commits)
x86/shstk: Change order of __user in type
x86/ibt: Convert IBT selftest to asm
x86/shstk: Don't retry vm_munmap() on -EINTR
x86/kbuild: Fix Documentation/ reference
x86/shstk: Move arch detail comment out of core mm
x86/shstk: Add ARCH_SHSTK_STATUS
x86/shstk: Add ARCH_SHSTK_UNLOCK
x86: Add PTRACE interface for shadow stack
selftests/x86: Add shadow stack test
x86/cpufeatures: Enable CET CR4 bit for shadow stack
x86/shstk: Wire in shadow stack interface
x86: Expose thread features in /proc/$PID/status
x86/shstk: Support WRSS for userspace
x86/shstk: Introduce map_shadow_stack syscall
x86/shstk: Check that signal frame is shadow stack mem
x86/shstk: Check that SSP is aligned on sigreturn
x86/shstk: Handle signals for shadow stack
x86/shstk: Introduce routines modifying shstk
x86/shstk: Handle thread shadow stack
x86/shstk: Add user-mode shadow stack support
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull non-MM updates from Andrew Morton:
- An extensive rework of kexec and crash Kconfig from Eric DeVolder
("refactor Kconfig to consolidate KEXEC and CRASH options")
- kernel.h slimming work from Andy Shevchenko ("kernel.h: Split out a
couple of macros to args.h")
- gdb feature work from Kuan-Ying Lee ("Add GDB memory helper
commands")
- vsprintf inclusion rationalization from Andy Shevchenko
("lib/vsprintf: Rework header inclusions")
- Switch the handling of kdump from a udev scheme to in-kernel
handling, by Eric DeVolder ("crash: Kernel handling of CPU and memory
hot un/plug")
- Many singleton patches to various parts of the tree
* tag 'mm-nonmm-stable-2023-08-28-22-48' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (81 commits)
document while_each_thread(), change first_tid() to use for_each_thread()
drivers/char/mem.c: shrink character device's devlist[] array
x86/crash: optimize CPU changes
crash: change crash_prepare_elf64_headers() to for_each_possible_cpu()
crash: hotplug support for kexec_load()
x86/crash: add x86 crash hotplug support
crash: memory and CPU hotplug sysfs attributes
kexec: exclude elfcorehdr from the segment digest
crash: add generic infrastructure for crash hotplug support
crash: move a few code bits to setup support of crash hotplug
kstrtox: consistently use _tolower()
kill do_each_thread()
nilfs2: fix WARNING in mark_buffer_dirty due to discarded buffer reuse
scripts/bloat-o-meter: count weak symbol sizes
treewide: drop CONFIG_EMBEDDED
lockdep: fix static memory detection even more
lib/vsprintf: declare no_hash_pointers in sprintf.h
lib/vsprintf: split out sprintf() and friends
kernel/fork: stop playing lockless games for exe_file replacement
adfs: delete unused "union adfs_dirtail" definition
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Some swap cleanups from Ma Wupeng ("fix WARN_ON in
add_to_avail_list")
- Peter Xu has a series (mm/gup: Unify hugetlb, speed up thp") which
reduces the special-case code for handling hugetlb pages in GUP. It
also speeds up GUP handling of transparent hugepages.
- Peng Zhang provides some maple tree speedups ("Optimize the fast path
of mas_store()").
- Sergey Senozhatsky has improved te performance of zsmalloc during
compaction (zsmalloc: small compaction improvements").
- Domenico Cerasuolo has developed additional selftest code for zswap
("selftests: cgroup: add zswap test program").
- xu xin has doe some work on KSM's handling of zero pages. These
changes are mainly to enable the user to better understand the
effectiveness of KSM's treatment of zero pages ("ksm: support
tracking KSM-placed zero-pages").
- Jeff Xu has fixes the behaviour of memfd's
MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED sysctl ("mm/memfd: fix sysctl
MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED").
- David Howells has fixed an fscache optimization ("mm, netfs, fscache:
Stop read optimisation when folio removed from pagecache").
- Axel Rasmussen has given userfaultfd the ability to simulate memory
poisoning ("add UFFDIO_POISON to simulate memory poisoning with
UFFD").
- Miaohe Lin has contributed some routine maintenance work on the
memory-failure code ("mm: memory-failure: remove unneeded PageHuge()
check").
- Peng Zhang has contributed some maintenance work on the maple tree
code ("Improve the validation for maple tree and some cleanup").
- Hugh Dickins has optimized the collapsing of shmem or file pages into
THPs ("mm: free retracted page table by RCU").
- Jiaqi Yan has a patch series which permits us to use the healthy
subpages within a hardware poisoned huge page for general purposes
("Improve hugetlbfs read on HWPOISON hugepages").
- Kemeng Shi has done some maintenance work on the pagetable-check code
("Remove unused parameters in page_table_check").
- More folioification work from Matthew Wilcox ("More filesystem folio
conversions for 6.6"), ("Followup folio conversions for zswap"). And
from ZhangPeng ("Convert several functions in page_io.c to use a
folio").
- page_ext cleanups from Kemeng Shi ("minor cleanups for page_ext").
- Baoquan He has converted some architectures to use the
GENERIC_IOREMAP ioremap()/iounmap() code ("mm: ioremap: Convert
architectures to take GENERIC_IOREMAP way").
- Anshuman Khandual has optimized arm64 tlb shootdown ("arm64: support
batched/deferred tlb shootdown during page reclamation/migration").
- Better maple tree lockdep checking from Liam Howlett ("More strict
maple tree lockdep"). Liam also developed some efficiency
improvements ("Reduce preallocations for maple tree").
- Cleanup and optimization to the secondary IOMMU TLB invalidation,
from Alistair Popple ("Invalidate secondary IOMMU TLB on permission
upgrade").
- Ryan Roberts fixes some arm64 MM selftest issues ("selftests/mm fixes
for arm64").
- Kemeng Shi provides some maintenance work on the compaction code
("Two minor cleanups for compaction").
- Some reduction in mmap_lock pressure from Matthew Wilcox ("Handle
most file-backed faults under the VMA lock").
- Aneesh Kumar contributes code to use the vmemmap optimization for DAX
on ppc64, under some circumstances ("Add support for DAX vmemmap
optimization for ppc64").
- page-ext cleanups from Kemeng Shi ("add page_ext_data to get client
data in page_ext"), ("minor cleanups to page_ext header").
- Some zswap cleanups from Johannes Weiner ("mm: zswap: three
cleanups").
- kmsan cleanups from ZhangPeng ("minor cleanups for kmsan").
- VMA handling cleanups from Kefeng Wang ("mm: convert to
vma_is_initial_heap/stack()").
- DAMON feature work from SeongJae Park ("mm/damon/sysfs-schemes:
implement DAMOS tried total bytes file"), ("Extend DAMOS filters for
address ranges and DAMON monitoring targets").
- Compaction work from Kemeng Shi ("Fixes and cleanups to compaction").
- Liam Howlett has improved the maple tree node replacement code
("maple_tree: Change replacement strategy").
- ZhangPeng has a general code cleanup - use the K() macro more widely
("cleanup with helper macro K()").
- Aneesh Kumar brings memmap-on-memory to ppc64 ("Add support for
memmap on memory feature on ppc64").
- pagealloc cleanups from Kemeng Shi ("Two minor cleanups for pcp list
in page_alloc"), ("Two minor cleanups for get pageblock
migratetype").
- Vishal Moola introduces a memory descriptor for page table tracking,
"struct ptdesc" ("Split ptdesc from struct page").
- memfd selftest maintenance work from Aleksa Sarai ("memfd: cleanups
for vm.memfd_noexec").
- MM include file rationalization from Hugh Dickins ("arch: include
asm/cacheflush.h in asm/hugetlb.h").
- THP debug output fixes from Hugh Dickins ("mm,thp: fix sloppy text
output").
- kmemleak improvements from Xiaolei Wang ("mm/kmemleak: use
object_cache instead of kmemleak_initialized").
- More folio-related cleanups from Matthew Wilcox ("Remove _folio_dtor
and _folio_order").
- A VMA locking scalability improvement from Suren Baghdasaryan
("Per-VMA lock support for swap and userfaults").
- pagetable handling cleanups from Matthew Wilcox ("New page table
range API").
- A batch of swap/thp cleanups from David Hildenbrand ("mm/swap: stop
using page->private on tail pages for THP_SWAP + cleanups").
- Cleanups and speedups to the hugetlb fault handling from Matthew
Wilcox ("Change calling convention for ->huge_fault").
- Matthew Wilcox has also done some maintenance work on the MM
subsystem documentation ("Improve mm documentation").
* tag 'mm-stable-2023-08-28-18-26' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (489 commits)
maple_tree: shrink struct maple_tree
maple_tree: clean up mas_wr_append()
secretmem: convert page_is_secretmem() to folio_is_secretmem()
nios2: fix flush_dcache_page() for usage from irq context
hugetlb: add documentation for vma_kernel_pagesize()
mm: add orphaned kernel-doc to the rst files.
mm: fix clean_record_shared_mapping_range kernel-doc
mm: fix get_mctgt_type() kernel-doc
mm: fix kernel-doc warning from tlb_flush_rmaps()
mm: remove enum page_entry_size
mm: allow ->huge_fault() to be called without the mmap_lock held
mm: move PMD_ORDER to pgtable.h
mm: remove checks for pte_index
memcg: remove duplication detection for mem_cgroup_uncharge_swap
mm/huge_memory: work on folio->swap instead of page->private when splitting folio
mm/swap: inline folio_set_swap_entry() and folio_swap_entry()
mm/swap: use dedicated entry for swap in folio
mm/swap: stop using page->private on tail pages for THP_SWAP
selftests/mm: fix WARNING comparing pointer to 0
selftests: cgroup: fix test_kmem_memcg_deletion kernel mem check
...
|
|
Rename PFN_SHIFT_OFFSET to PTE_PFN_SHIFT. Change the calling convention
for set_pte() to be the same as other architectures. Add
update_mmu_cache_range(), flush_icache_pages() and flush_dcache_folio().
[arnd@arndb.de: mark flush_dcache_folio() inline]
Link: https://lkml.kernel.org/r/20230810141947.1236730-9-arnd@kernel.org
Link: https://lkml.kernel.org/r/20230802151406.3735276-17-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Michal Simek <monstr@monstr.eu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Making virt_to_pfn() a static inline taking a strongly typed
(const void *) makes the contract of a passing a pointer of that
type to the function explicit and exposes any misuse of the
macro virt_to_pfn() acting polymorphic and accepting many types
such |