summaryrefslogtreecommitdiff
path: root/include/linux/bpf-cgroup.h
AgeCommit message (Collapse)AuthorFilesLines
2024-09-03bpf, net: Fix a potential race in do_sock_getsockopt()Tze-nan Wu1-9/+0
There's a potential race when `cgroup_bpf_enabled(CGROUP_GETSOCKOPT)` is false during the execution of `BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN`, but becomes true when `BPF_CGROUP_RUN_PROG_GETSOCKOPT` is called. This inconsistency can lead to `BPF_CGROUP_RUN_PROG_GETSOCKOPT` receiving an "-EFAULT" from `__cgroup_bpf_run_filter_getsockopt(max_optlen=0)`. Scenario shown as below: `process A` `process B` ----------- ------------ BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN enable CGROUP_GETSOCKOPT BPF_CGROUP_RUN_PROG_GETSOCKOPT (-EFAULT) To resolve this, remove the `BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN` macro and directly uses `copy_from_sockptr` to ensure that `max_optlen` is always set before `BPF_CGROUP_RUN_PROG_GETSOCKOPT` is invoked. Fixes: 0d01da6afc54 ("bpf: implement getsockopt and setsockopt hooks") Co-developed-by: Yanghui Li <yanghui.li@mediatek.com> Signed-off-by: Yanghui Li <yanghui.li@mediatek.com> Co-developed-by: Cheng-Jui Wang <cheng-jui.wang@mediatek.com> Signed-off-by: Cheng-Jui Wang <cheng-jui.wang@mediatek.com> Signed-off-by: Tze-nan Wu <Tze-nan.Wu@mediatek.com> Acked-by: Stanislav Fomichev <sdf@fomichev.me> Acked-by: Alexei Starovoitov <ast@kernel.org> Link: https://patch.msgid.link/20240830082518.23243-1-Tze-nan.Wu@mediatek.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-02-13bpf: remove check in __cgroup_bpf_run_filter_skbOliver Crumrine1-1/+2
Originally, this patch removed a redundant check in BPF_CGROUP_RUN_PROG_INET_EGRESS, as the check was already being done in the function it called, __cgroup_bpf_run_filter_skb. For v2, it was reccomended that I remove the check from __cgroup_bpf_run_filter_skb, and add the checks to the other macro that calls that function, BPF_CGROUP_RUN_PROG_INET_INGRESS. To sum it up, checking that the socket exists and that it is a full socket is now part of both macros BPF_CGROUP_RUN_PROG_INET_EGRESS and BPF_CGROUP_RUN_PROG_INET_INGRESS, and it is no longer part of the function they call, __cgroup_bpf_run_filter_skb. v3->v4: Fixed weird merge conflict. v2->v3: Sent to bpf-next instead of generic patch v1->v2: Addressed feedback about where check should be removed. Signed-off-by: Oliver Crumrine <ozlinuxc@gmail.com> Acked-by: Stanislav Fomichev <sdf@google.com> Link: https://lore.kernel.org/r/7lv62yiyvmj5a7eozv2iznglpkydkdfancgmbhiptrgvgan5sy@3fl3onchgdz3 Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2023-11-01Merge tag 'for-6.7/io_uring-sockopt-2023-10-30' of git://git.kernel.dk/linuxLinus Torvalds1-4/+5
Pull io_uring {get,set}sockopt support from Jens Axboe: "This adds support for using getsockopt and setsockopt via io_uring. The main use cases for this is to enable use of direct descriptors, rather than first instantiating a normal file descriptor, doing the option tweaking needed, then turning it into a direct descriptor. With this support, we can avoid needing a regular file descriptor completely. The net and bpf bits have been signed off on their side" * tag 'for-6.7/io_uring-sockopt-2023-10-30' of git://git.kernel.dk/linux: selftests/bpf/sockopt: Add io_uring support io_uring/cmd: Introduce SOCKET_URING_OP_SETSOCKOPT io_uring/cmd: Introduce SOCKET_URING_OP_GETSOCKOPT io_uring/cmd: return -EOPNOTSUPP if net is disabled selftests/net: Extract uring helpers to be reusable tools headers: Grab copy of io_uring.h io_uring/cmd: Pass compat mode in issue_flags net/socket: Break down __sys_getsockopt net/socket: Break down __sys_setsockopt bpf: Add sockptr support for setsockopt bpf: Add sockptr support for getsockopt
2023-10-19net/socket: Break down __sys_getsockoptBreno Leitao1-1/+1
Split __sys_getsockopt() into two functions by removing the core logic into a sub-function (do_sock_getsockopt()). This will avoid code duplication when doing the same operation in other callers, for instance. do_sock_getsockopt() will be called by io_uring getsockopt() command operation in the following patch. The same was done for the setsockopt pair. Suggested-by: Martin KaFai Lau <martin.lau@linux.dev> Signed-off-by: Breno Leitao <leitao@debian.org> Acked-by: Jakub Kicinski <kuba@kernel.org> Acked-by: Martin KaFai Lau <martin.lau@kernel.org> Link: https://lore.kernel.org/r/20231016134750.1381153-5-leitao@debian.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2023-10-19bpf: Add sockptr support for setsockoptBreno Leitao1-1/+1
The whole network stack uses sockptr, and while it doesn't move to something more modern, let's use sockptr in setsockptr BPF hooks, so, it could be used by other callers. The main motivation for this change is to use it in the io_uring {g,s}etsockopt(), which will use a userspace pointer for *optval, but, a kernel value for optlen. Link: https://lore.kernel.org/all/ZSArfLaaGcfd8LH8@gmail.com/ Signed-off-by: Breno Leitao <leitao@debian.org> Acked-by: Martin KaFai Lau <martin.lau@kernel.org> Link: https://lore.kernel.org/r/20231016134750.1381153-3-leitao@debian.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2023-10-19bpf: Add sockptr support for getsockoptBreno Leitao1-2/+3
The whole network stack uses sockptr, and while it doesn't move to something more modern, let's use sockptr in getsockptr BPF hooks, so, it could be used by other callers. The main motivation for this change is to use it in the io_uring {g,s}etsockopt(), which will use a userspace pointer for *optval, but, a kernel value for optlen. Link: https://lore.kernel.org/all/ZSArfLaaGcfd8LH8@gmail.com/ Signed-off-by: Breno Leitao <leitao@debian.org> Acked-by: Martin KaFai Lau <martin.lau@kernel.org> Link: https://lore.kernel.org/r/20231016134750.1381153-2-leitao@debian.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2023-10-11bpf: Implement cgroup sockaddr hooks for unix socketsDaan De Meyer1-0/+17
These hooks allows intercepting connect(), getsockname(), getpeername(), sendmsg() and recvmsg() for unix sockets. The unix socket hooks get write access to the address length because the address length is not fixed when dealing with unix sockets and needs to be modified when a unix socket address is modified by the hook. Because abstract socket unix addresses start with a NUL byte, we cannot recalculate the socket address in kernelspace after running the hook by calculating the length of the unix socket path using strlen(). These hooks can be used when users want to multiplex syscall to a single unix socket to multiple different processes behind the scenes by redirecting the connect() and other syscalls to process specific sockets. We do not implement support for intercepting bind() because when using bind() with unix sockets with a pathname address, this creates an inode in the filesystem which must be cleaned up. If we rewrite the address, the user might try to clean up the wrong file, leaking the socket in the filesystem where it is never cleaned up. Until we figure out a solution for this (and a use case for intercepting bind()), we opt to not allow rewriting the sockaddr in bind() calls. We also implement recvmsg() support for connected streams so that after a connect() that is modified by a sockaddr hook, any corresponding recmvsg() on the connected socket can also be modified to make the connected program think it is connected to the "intended" remote. Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com> Signed-off-by: Daan De Meyer <daan.j.demeyer@gmail.com> Link: https://lore.kernel.org/r/20231011185113.140426-5-daan.j.demeyer@gmail.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2023-10-11bpf: Propagate modified uaddrlen from cgroup sockaddr programsDaan De Meyer1-36/+37
As prep for adding unix socket support to the cgroup sockaddr hooks, let's propagate the sockaddr length back to the caller after running a bpf cgroup sockaddr hook program. While not important for AF_INET or AF_INET6, the sockaddr length is important when working with AF_UNIX sockaddrs as the size of the sockaddr cannot be determined just from the address family or the sockaddr's contents. __cgroup_bpf_run_filter_sock_addr() is modified to take the uaddrlen as an input/output argument. After running the program, the modified sockaddr length is stored in the uaddrlen pointer. Signed-off-by: Daan De Meyer <daan.j.demeyer@gmail.com> Link: https://lore.kernel.org/r/20231011185113.140426-3-daan.j.demeyer@gmail.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2023-06-30bpf, net: Check skb ownership against full socket.Kui-Feng Lee1-2/+2
Check skb ownership of an skb against full sockets instead of request_sock. The filters were called only if an skb is owned by the sock that the skb is sent out through. In another words, skb->sk should point to the sock that it is sending through its egress. However, the filters would miss SYN/ACK skbs that they are owned by a request_sock but sent through the listener sock, that is the socket listening incoming connections. However, the listener socket is also the full socket of the request socket. We should use the full socket as the owner socket of an skb instead. What is the ownership check for? ================================ BPF_CGROUP_RUN_PROG_INET_EGRESS() checked sk == skb->sk to ensure the ownership of an skb. Alexei referred to a mailing list conversation [0] that took place a few years ago. In that conversation, Daniel Borkmann stated that: Wouldn't that mean however, when you go through stacked devices that you'd run the same eBPF cgroup program for skb->sk multiple times? According to what Daniel said, the ownership check mentioned earlier presumably prevents multiple calls of egress filters caused by an skb. A test that reproduce this scenario shows that the BPF cgroup egress programs can be called multiple times for one skb if this ownership check is not there. So, we can not just remove this check. Test Stacked Devices ==================== We use L2TP to build an environment of stacked devices. L2TP (Layer 2 Tunneling Protocol) is a tunneling protocol used to support virtual private networks (VPNs). It relays encapsulated packets; for example in UDP, to its peer by using a socket. Using L2TP, packets are first sent through the IP stack and should then arrive at an L2TP device. The device will expand its skb header to encapsulate the packet. The skb will be sent back to the IP stack using the socket that was made for the L2TP session. After that, the routing process will occur once more, but this time for a new destination. We changed tools/testing/selftests/net/l2tp.sh to set up a test environment using L2TP. The run_ping() function in l2tp.sh is where the main change occurred. run_ping() { local desc="$1" sleep 10 run_cmd host-1 ${ping6} -s 227 -c 4 -i 10 -I fc00:101::1 fc00:101::2 log_test $? 0 "IPv6 route through L2TP tunnel ${desc}" sleep 10 } The test will use L2TP devices to send PING messages. These messages will have a message size of 227 bytes as a special label to distinguish them. This is not an ideal solution, but works. During the execution of the test script, bpftrace was attached to ip6_finish_output() and l2tp_xmit_skb(): bpftrace -e ' kfunc:ip6_finish_output { time("%H:%M:%S: "); printf("ip6_finish_output skb=%p skb->len=%d cgroup=%p sk=%p skb->sk=%p\n", args->skb, args->skb->len, args->sk->sk_cgrp_data.cgroup, args->sk, args->skb->sk); } kfunc:l2tp_xmit_skb { time("%H:%M:%S: "); printf("l2tp_xmit_skb skb=%p sk=%p\n", args->skb, args->session->tunnel->sock); }' The following is part of the output messages printed by bpftrace: 16:35:20: ip6_finish_output skb=0xffff888103d8e600 skb->len=275 cgroup=0xffff88810741f800 sk=0xffff888105f3b900 skb->sk=0xffff888105f3b900 16:35:20: l2tp_xmit_skb skb=0xffff888103d8e600 sk=0xffff888103dd6300 16:35:20: ip6_finish_output skb=0xffff888103d8e600 skb->len=337 cgroup=0xffff88810741f800 sk=0xffff888103dd6300 skb->sk=0xffff888105f3b900 16:35:20: ip6_finish_output skb=0xffff888103d8e600 skb->len=337 cgroup=(nil) sk=(nil) skb->sk=(nil) 16:35:20: ip6_finish_output skb=0xffff888103d8e000 skb->len=275 cgroup=0xffffffff837741d0 sk=0xffff888101fe0000 skb->sk=0xffff888101fe0000 16:35:20: l2tp_xmit_skb skb=0xffff888103d8e000 sk=0xffff888103483180 16:35:20: ip6_finish_output skb=0xffff888103d8e000 skb->len=337 cgroup=0xffff88810741f800 sk=0xffff888103483180 skb->sk=0xffff888101fe0000 16:35:20: ip6_finish_output skb=0xffff888103d8e000 skb->len=337 cgroup=(nil) sk=(nil) skb->sk=(nil) The first four entries describe a PING message that was sent using the ping command, whereas the following four entries describe the response received. Multiple sockets are used to send one skb, including the socket used by the L2TP session. This can be observed. Based on this information, it seems that the ownership check is designed to avoid multiple calls of egress filters caused by a single skb. [0] https://lore.kernel.org/all/58193E9D.7040201@iogearbox.net/ Signed-off-by: Kui-Feng Lee <kuifeng@meta.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20230624014600.576756-2-kuifeng@meta.com
2022-08-23bpf: Introduce cgroup_{common,current}_func_protoStanislav Fomichev1-0/+17
Split cgroup_base_func_proto into the following: * cgroup_common_func_proto - common helpers for all cgroup hooks * cgroup_current_func_proto - common helpers for all cgroup hooks running in the process context (== have meaningful 'current'). Move bpf_{g,s}et_retval and other cgroup-related helpers into kernel/bpf/cgroup.c so they closer to where they are being used. Signed-off-by: Stanislav Fomichev <sdf@google.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/r/20220823222555.523590-2-sdf@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-06-29bpf: per-cgroup lsm flavorStanislav Fomichev1-0/+7
Allow attaching to lsm hooks in the cgroup context. Attaching to per-cgroup LSM works exactly like attaching to other per-cgroup hooks. New BPF_LSM_CGROUP is added to trigger new mode; the actual lsm hook we attach to is signaled via existing attach_btf_id. For the hooks that have 'struct socket' or 'struct sock' as its first argument, we use the cgroup associated with that socket. For the rest, we use 'current' cgroup (this is all on default hierarchy == v2 only). Note that for some hooks that work on 'struct sock' we still take the cgroup from 'current' because some of them work on the socket that hasn't been properly initialized yet. Behind the scenes, we allocate a shim program that is attached to the trampoline and runs cgroup effective BPF programs array. This shim has some rudimentary ref counting and can be shared between several programs attaching to the same lsm hook from different cgroups. Note that this patch bloats cgroup size because we add 211 cgroup_bpf_attach_type(s) for simplicity sake. This will be addressed in the subsequent patch. Also note that we only add non-sleepable flavor for now. To enable sleepable use-cases, bpf_prog_run_array_cg has to grab trace rcu, shim programs have to be freed via trace rcu, cgroup_bpf.effective should be also trace-rcu-managed + maybe some other changes that I'm not aware of. Reviewed-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Stanislav Fomichev <sdf@google.com> Link: https://lore.kernel.org/r/20220628174314.1216643-4-sdf@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-06-29bpf: convert cgroup_bpf.progs to hlistStanislav Fomichev1-1/+1
This lets us reclaim some space to be used by new cgroup lsm slots. Before: struct cgroup_bpf { struct bpf_prog_array * effective[23]; /* 0 184 */ /* --- cacheline 2 boundary (128 bytes) was 56 bytes ago --- */ struct list_head progs[23]; /* 184 368 */ /* --- cacheline 8 boundary (512 bytes) was 40 bytes ago --- */ u32 flags[23]; /* 552 92 */ /* XXX 4 bytes hole, try to pack */ /* --- cacheline 10 boundary (640 bytes) was 8 bytes ago --- */ struct list_head storages; /* 648 16 */ struct bpf_prog_array * inactive; /* 664 8 */ struct percpu_ref refcnt; /* 672 16 */ struct work_struct release_work; /* 688 32 */ /* size: 720, cachelines: 12, members: 7 */ /* sum members: 716, holes: 1, sum holes: 4 */ /* last cacheline: 16 bytes */ }; After: struct cgroup_bpf { struct bpf_prog_array * effective[23]; /* 0 184 */ /* --- cacheline 2 boundary (128 bytes) was 56 bytes ago --- */ struct hlist_head progs[23]; /* 184 184 */ /* --- cacheline 5 boundary (320 bytes) was 48 bytes ago --- */ u8 flags[23]; /* 368 23 */ /* XXX 1 byte hole, try to pack */ /* --- cacheline 6 boundary (384 bytes) was 8 bytes ago --- */ struct list_head storages; /* 392 16 */ struct bpf_prog_array * inactive; /* 408 8 */ struct percpu_ref refcnt; /* 416 16 */ struct work_struct release_work; /* 432 72 */ /* size: 504, cachelines: 8, members: 7 */ /* sum members: 503, holes: 1, sum holes: 1 */ /* last cacheline: 56 bytes */ }; Suggested-by: Jakub Sitnicki <jakub@cloudflare.com> Reviewed-by: Jakub Sitnicki <jakub@cloudflare.com> Reviewed-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Stanislav Fomichev <sdf@google.com> Link: https://lore.kernel.org/r/20220628174314.1216643-3-sdf@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-04-25bpf: Use bpf_prog_run_array_cg_flags everywhereStanislav Fomichev1-6/+2
Rename bpf_prog_run_array_cg_flags to bpf_prog_run_array_cg and use it everywhere. check_return_code already enforces sane return ranges for all cgroup types. (only egress and bind hooks have uncanonical return ranges, the rest is using [0, 1]) No functional changes. v2: - 'func_ret & 1' under explicit test (Andrii & Martin) Suggested-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20220425220448.3669032-1-sdf@google.com
2022-01-27cgroup/bpf: fast path skb BPF filteringPavel Begunkov1-4/+20
Even though there is a static key protecting from overhead from cgroup-bpf skb filtering when there is nothing attached, in many cases it's not enough as registering a filter for one type will ruin the fast path for all others. It's observed in production servers I've looked at but also in laptops, where registration is done during init by systemd or something else. Add a per-socket fast path check guarding from such overhead. This affects both receive and transmit paths of TCP, UDP and other protocols. It showed ~1% tx/s improvement in small payload UDP send benchmarks using a real NIC and in a server environment and the number jumps to 2-3% for preemtible kernels. Reviewed-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Pavel Begunkov <asml.silence@gmail.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/r/d8c58857113185a764927a46f4b5a058d36d3ec3.1643292455.git.asml.silence@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2021-12-16bpf: Remove the cgroup -> bpf header dependecyJakub Kicinski1-56/+1
Remove the dependency from cgroup-defs.h to bpf-cgroup.h and bpf.h. This reduces the incremental build size of x86 allmodconfig after bpf.h was touched from ~17k objects rebuilt to ~5k objects. bpf.h is 2.2kLoC and is modified relatively often. We need a new header with just the definition of struct cgroup_bpf and enum cgroup_bpf_attach_type, this is akin to cgroup-defs.h. Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Tejun Heo <tj@kernel.org> Link: https://lore.kernel.org/bpf/20211216025538.1649516-4-kuba@kernel.org
2021-11-02Merge branch 'for-5.16' of ↵Linus Torvalds1-20/+0
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup updates from Tejun Heo: - The misc controller now reports allocation rejections through misc.events instead of printking - cgroup_mutex usage is reduced to improve scalability of some operations - vhost helper threads are now assigned to the right cgroup on cgroup2 - Bug fixes * 'for-5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: cgroup: bpf: Move wrapper for __cgroup_bpf_*() to kernel/bpf/cgroup.c cgroup: Fix rootcg cpu.stat guest double counting cgroup: no need for cgroup_mutex for /proc/cgroups cgroup: remove cgroup_mutex from cgroupstats_build cgroup: reduce dependency on cgroup_mutex cgroup: cgroup-v1: do not exclude cgrp_dfl_root cgroup: Make rebind_subsystems() disable v2 controllers all at once docs/cgroup: add entry for misc.events misc_cgroup: remove error log to avoid log flood misc_cgroup: introduce misc.events to count failures
2021-11-01cgroup: bpf: Move wrapper for __cgroup_bpf_*() to kernel/bpf/cgroup.cHe Fengqing1-20/+0
In commit 324bda9e6c5a("bpf: multi program support for cgroup+bpf") cgroup_bpf_*() called from kernel/bpf/syscall.c, but now they are only used in kernel/bpf/cgroup.c, so move these function to kernel/bpf/cgroup.c, like cgroup_bpf_replace(). Signed-off-by: He Fengqing <hefengqing@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2021-10-27inet: remove races in inet{6}_getname()Eric Dumazet1-0/+1
syzbot reported data-races in inet_getname() multiple times, it is time we fix this instead of pretending applications should not trigger them. getsockname() and getpeername() are not really considered fast path. v2: added the missing BPF_CGROUP_RUN_SA_PROG() declaration needed when CONFIG_CGROUP_BPF=n, as reported by kernel test robot <lkp@intel.com> syzbot typical report: BUG: KCSAN: data-race in __inet_hash_connect / inet_getname write to 0xffff888136d66cf8 of 2 bytes by task 14374 on cpu 1: __inet_hash_connect+0x7ec/0x950 net/ipv4/inet_hashtables.c:831 inet_hash_connect+0x85/0x90 net/ipv4/inet_hashtables.c:853 tcp_v4_connect+0x782/0xbb0 net/ipv4/tcp_ipv4.c:275 __inet_stream_connect+0x156/0x6e0 net/ipv4/af_inet.c:664 inet_stream_connect+0x44/0x70 net/ipv4/af_inet.c:728 __sys_connect_file net/socket.c:1896 [inline] __sys_connect+0x254/0x290 net/socket.c:1913 __do_sys_connect net/socket.c:1923 [inline] __se_sys_connect net/socket.c:1920 [inline] __x64_sys_connect+0x3d/0x50 net/socket.c:1920 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x44/0xa0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae read to 0xffff888136d66cf8 of 2 bytes by task 14408 on cpu 0: inet_getname+0x11f/0x170 net/ipv4/af_inet.c:790 __sys_getsockname+0x11d/0x1b0 net/socket.c:1946 __do_sys_getsockname net/socket.c:1961 [inline] __se_sys_getsockname net/socket.c:1958 [inline] __x64_sys_getsockname+0x3e/0x50 net/socket.c:1958 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x44/0xa0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae value changed: 0x0000 -> 0xdee0 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 14408 Comm: syz-executor.3 Not tainted 5.15.0-rc3-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Link: https://lore.kernel.org/r/20211026213014.3026708-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-23bpf: Migrate cgroup_bpf to internal cgroup_bpf_attach_type enumDave Marchevsky1-59/+123
Add an enum (cgroup_bpf_attach_type) containing only valid cgroup_bpf attach types and a function to map bpf_attach_type values to the new enum. Inspired by netns_bpf_attach_type. Then, migrate cgroup_bpf to use cgroup_bpf_attach_type wherever possible. Functionality is unchanged as attach_type_to_prog_type switches in bpf/syscall.c were preventing non-cgroup programs from making use of the invalid cgroup_bpf array slots. As a result struct cgroup_bpf uses 504 fewer bytes relative to when its arrays were sized using MAX_BPF_ATTACH_TYPE. bpf_cgroup_storage is notably not migrated as struct bpf_cgroup_storage_key is part of uapi and contains a bpf_attach_type member which is not meant to be opaque. Similarly, bpf_cgroup_link continues to report its bpf_attach_type member to userspace via fdinfo and bpf_link_info. To ease disambiguation, bpf_attach_type variables are renamed from 'type' to 'atype' when changed to cgroup_bpf_attach_type. Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210819092420.1984861-2-davemarchevsky@fb.com
2021-07-16bpf: Add ambient BPF runtime context stored in currentAndrii Nakryiko1-54/+0
b910eaaaa4b8 ("bpf: Fix NULL pointer dereference in bpf_get_local_storage() helper") fixed the problem with cgroup-local storage use in BPF by pre-allocating per-CPU array of 8 cgroup storage pointers to accommodate possible BPF program preemptions and nested executions. While this seems to work good in practice, it introduces new and unnecessary failure mode in which not all BPF programs might be executed if we fail to find an unused slot for cgroup storage, however unlikely it is. It might also not be so unlikely when/if we allow sleepable cgroup BPF programs in the future. Further, the way that cgroup storage is implemented as ambiently-available property during entire BPF program execution is a convenient way to pass extra information to BPF program and helpers without requiring user code to pass around extra arguments explicitly. So it would be good to have a generic solution that can allow implementing this without arbitrary restrictions. Ideally, such solution would work for both preemptable and sleepable BPF programs in exactly the same way. This patch introduces such solution, bpf_run_ctx. It adds one pointer field (bpf_ctx) to task_struct. This field is maintained by BPF_PROG_RUN family of macros in such a way that it always stays valid throughout BPF program execution. BPF program preemption is handled by remembering previous current->bpf_ctx value locally while executing nested BPF program and restoring old value after nested BPF program finishes. This is handled by two helper functions, bpf_set_run_ctx() and bpf_reset_run_ctx(), which are supposed to be used before and after BPF program runs, respectively. Restoring old value of the pointer handles preemption, while bpf_run_ctx pointer being a property of current task_struct naturally solves this problem for sleepable BPF programs by "following" BPF program execution as it is scheduled in and out of CPU. It would even allow CPU migration of BPF programs, even though it's not currently allowed by BPF infra. This patch cleans up cgroup local storage handling as a first application. The design itself is generic, though, with bpf_run_ctx being an empty struct that is supposed to be embedded into a specific struct for a given BPF program type (bpf_cg_run_ctx in this case). Follow up patches are planned that will expand this mechanism for other uses within tracing BPF programs. To verify that this change doesn't revert the fix to the original cgroup storage issue, I ran the same repro as in the original report ([0]) and didn't get any problems. Replacing bpf_reset_run_ctx(old_run_ctx) with bpf_reset_run_ctx(NULL) triggers the issue pretty quickly (so repro does work). [0] https://lore.kernel.org/bpf/YEEvBUiJl2pJkxTd@krava/ Fixes: b910eaaaa4b8 ("bpf: Fix NULL pointer dereference in bpf_get_local_storage() helper") Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210712230615.3525979-1-andrii@kernel.org
2021-04-03bpf, cgroup: Delete repeated struct bpf_prog declarationWan Jiabing1-1/+0
struct bpf_prog is declared twice. There is one declaration which is independent on the macro at 18th line. So the below one is not needed though. Remove the duplicate. Signed-off-by: Wan Jiabing <wanjiabing@vivo.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20210401064637.993327-1-wanjiabing@vivo.com
2021-03-25bpf: Fix NULL pointer dereference in bpf_get_local_storage() helperYonghong Song1-8/+49
Jiri Olsa reported a bug ([1]) in kernel where cgroup local storage pointer may be NULL in bpf_get_local_storage() helper. There are two issues uncovered by this bug: (1). kprobe or tracepoint prog incorrectly sets cgroup local storage before prog run, (2). due to change from preempt_disable to migrate_disable, preemption is possible and percpu storage might be overwritten by other tasks. This issue (1) is fixed in [2]. This patch tried to address issue (2). The following shows how things can go wrong: task 1: bpf_cgroup_storage_set() for percpu local storage preemption happens task 2: bpf_cgroup_storage_set() for percpu local storage preemption happens task 1: run bpf program task 1 will effectively use the percpu local storage setting by task 2 which will be either NULL or incorrect ones. Instead of just one common local storage per cpu, this patch fixed the issue by permitting 8 local storages per cpu and each local storage is identified by a task_struct pointer. This way, we allow at most 8 nested preemption between bpf_cgroup_storage_set() and bpf_cgroup_storage_unset(). The percpu local storage slot is released (calling bpf_cgroup_storage_unset()) by the same task after bpf program finished running. bpf_test_run() is also fixed to use the new bpf_cgroup_storage_set() interface. The patch is tested on top of [2] with reproducer in [1]. Without this patch, kernel will emit error in 2-3 minutes. With this patch, after one hour, still no error. [1] https://lore.kernel.org/bpf/CAKH8qBuXCfUz=w8L+Fj74OaUpbosO29niYwTki7e3Ag044_aww@mail.gmail.com/T [2] https://lore.kernel.org/bpf/20210309185028.3763817-1-yhs@fb.com Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Roman Gushchin <guro@fb.com> Link: https://lore.kernel.org/bpf/20210323055146.3334476-1-yhs@fb.com
2021-01-27bpf: Allow rewriting to ports under ip_unprivileged_port_startStanislav Fomichev1-10/+28
At the moment, BPF_CGROUP_INET{4,6}_BIND hooks can rewrite user_port to the privileged ones (< ip_unprivileged_port_start), but it will be rejected later on in the __inet_bind or __inet6_bind. Let's add another return value to indicate that CAP_NET_BIND_SERVICE check should be ignored. Use the same idea as we currently use in cgroup/egress where bit #1 indicates CN. Instead, for cgroup/bind{4,6}, bit #1 indicates that CAP_NET_BIND_SERVICE should be bypassed. v5: - rename flags to be less confusing (Andrey Ignatov) - rework BPF_PROG_CGROUP_INET_EGRESS_RUN_ARRAY to work on flags and accept BPF_RET_SET_CN (no behavioral changes) v4: - Add missing IPv6 support (Martin KaFai Lau) v3: - Update description (Martin KaFai Lau) - Fix capability restore in selftest (Martin KaFai Lau) v2: - Switch to explicit return code (Martin KaFai Lau) Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Andrey Ignatov <rdna@fb.com> Link: https://lore.kernel.org/bpf/20210127193140.3170382-1-sdf@google.com
2021-01-20bpf: Split cgroup_bpf_enabled per attach typeStanislav Fomichev1-18/+20
When we attach any cgroup hook, the rest (even if unused/unattached) start to contribute small overhead. In particular, the one we want to avoid is __cgroup_bpf_run_filter_skb which does two redirections to get to the cgroup and pushes/pulls skb. Let's split cgroup_bpf_enabled to be per-attach to make sure only used attach types trigger. I've dropped some existing high-level cgroup_bpf_enabled in some places because BPF_PROG_CGROUP_XXX_RUN macros usually have another cgroup_bpf_enabled check. I also had to copy-paste BPF_CGROUP_RUN_SA_PROG_LOCK for GETPEERNAME/GETSOCKNAME because type for cgroup_bpf_enabled[type] has to be constant and known at compile time. Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20210115163501.805133-4-sdf@google.com
2021-01-20bpf: Remove extra lock_sock for TCP_ZEROCOPY_RECEIVEStanislav Fomichev1-4/+23
Add custom implementation of getsockopt hook for TCP_ZEROCOPY_RECEIVE. We skip generic hooks for TCP_ZEROCOPY_RECEIVE and have a custom call in do_tcp_getsockopt using the on-stack data. This removes 3% overhead for locking/unlocking the socket. Without this patch: 3.38% 0.07% tcp_mmap [kernel.kallsyms] [k] __cgroup_bpf_run_filter_getsockopt | --3.30%--__cgroup_bpf_run_filter_getsockopt | --0.81%--__kmalloc With the patch applied: 0.52% 0.12% tcp_mmap [kernel.kallsyms] [k] __cgroup_bpf_run_filter_getsockopt_kern Note, exporting uapi/tcp.h requires removing netinet/tcp.h from test_progs.h because those headers have confliciting definitions. Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20210115163501.805133-2-sdf@google.com
2020-12-02bpf: Allow bpf_{s,g}etsockopt from cgroup bind{4,6} hooksStanislav Fomichev1-6/+6
I have to now lock/unlock socket for the bind hook execution. That shouldn't cause any overhead because the socket is unbound and shouldn't receive any traffic. Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrey Ignatov <rdna@fb.com> Link: https://lore.kernel.org/bpf/20201202172516.3483656-3-sdf@google.com
2020-10-22Merge branch 'work.set_fs' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull initial set_fs() removal from Al Viro: "Christoph's set_fs base series + fixups" * 'work.set_fs' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: fs: Allow a NULL pos pointer to __kernel_read fs: Allow a NULL pos pointer to __kernel_write powerpc: remove address space overrides using set_fs() powerpc: use non-set_fs based maccess routines x86: remove address space overrides using set_fs() x86: make TASK_SIZE_MAX usable from assembly code x86: move PAGE_OFFSET, TASK_SIZE & friends to page_{32,64}_types.h lkdtm: remove set_fs-based tests test_bitmap: remove user bitmap tests uaccess: add infrastructure for kernel builds with set_fs() fs: don't allow splice read/write without explicit ops fs: don't allow kernel reads and writes without iter ops sysctl: Convert to iter interfaces proc: add a read_iter method to proc proc_ops proc: cleanup the compat vs no compat file ops proc: remove a level of indentation in proc_get_inode
2020-09-08sysctl: Convert to iter interfacesMatthew Wilcox (Oracle)1-1/+1
Using the read_iter/write_iter interfaces allows for in-kernel users to set sysctls without using set_fs(). Also, the buffer is a string, so give it the real type of 'char *', not void *. [AV: Christoph's fixup folded in] Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-08-24bpf: tcp: Allow bpf prog to write and parse TCP header optionMartin KaFai Lau1-0/+25
[ Note: The TCP changes here is mainly to implement the bpf pieces into the bpf_skops_*() functions introduced in the earlier patches. ] The earlier effort in BPF-TCP-CC allows the TCP Congestion Control algorithm to be written in BPF. It opens up opportunities to allow a faster turnaround time in testing/releasing new congestion control ideas to production environment. The same flexibility can be extended to writing TCP header option. It is not uncommon that people want to test new TCP header option to improve the TCP performance. Another use case is for data-center that has a more controlled environment and has more flexibility in putting header options for internal only use. For example, we want to test the idea in putting maximum delay ACK in TCP header option which is similar to a draft RFC proposal [1]. This patch introduces the necessary BPF API and use them in the TCP stack to allow BPF_PROG_TYPE_SOCK_OPS program to parse and write TCP header options. It currently supports most of the TCP packet except RST. Supported TCP header option: ─────────────────────────── This patch allows the bpf-prog to write any option kind. Different bpf-progs can write its own option by calling the new helper bpf_store_hdr_opt(). The helper will ensure there is no duplicated option in the header. By allowing bpf-prog to write any option kind, this gives a lot of flexibility to the bpf-prog. Different bpf-prog can write its own option kind. It could also allow the bpf-prog to support a recently standardized option on an older kernel. Sockops Callback Flags: ────────────────────── The bpf program will only be called to parse/write tcp header option if the following newly added callback flags are enabled in tp->bpf_sock_ops_cb_flags: BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG A few words on the PARSE CB flags. When the above PARSE CB flags are turned on, the bpf-prog will be called on packets received at a sk that has at least reached the ESTABLISHED state. The parsing of the SYN-SYNACK-ACK will be discussed in the "3 Way HandShake" section. The default is off for all of the above new CB flags, i.e. the bpf prog will not be called to parse or write bpf hdr option. There are details comment on these new cb flags in the UAPI bpf.h. sock_ops->skb_data and bpf_load_hdr_opt() ───────────────────────────────────────── sock_ops->skb_data and sock_ops->skb_data_end covers the whole TCP header and its options. They are read only. The new bpf_load_hdr_opt() helps to read a particular option "kind" from the skb_data. Please refer to the comment in UAPI bpf.h. It has details on what skb_data contains under different sock_ops->op. 3 Way HandShake ─────────────── The bpf-prog can learn if it is sending SYN or SYNACK by reading the sock_ops->skb_tcp_flags. * Passive side When writing SYNACK (i.e. sock_ops->op == BPF_SOCK_OPS_WRITE_HDR_OPT_CB), the received SYN skb will be available to the bpf prog. The bpf prog can use the SYN skb (which may carry the header option sent from the remote bpf prog) to decide what bpf header option should be written to the outgoing SYNACK skb. The SYN packet can be obtained by getsockopt(TCP_BPF_SYN*). More on this later. Also, the bpf prog can learn if it is in syncookie mode (by checking sock_ops->args[0] == BPF_WRITE_HDR_TCP_SYNACK_COOKIE). The bpf prog can store the received SYN pkt by using the existing bpf_setsockopt(TCP_SAVE_SYN). The example in a later patch does it. [ Note that the fullsock here is a listen sk, bpf_sk_storage is not very useful here since the listen sk will be shared by many concurrent connection requests. Extending bpf_sk_storage support to request_sock will add weight to the minisock and it is not necessary better than storing the whole ~100 bytes SYN pkt. ] When the connection is established, the bpf prog will be called in the existing PASSIVE_ESTABLISHED_CB callback. At that time, the bpf prog can get the header option from the saved syn and then apply the needed operation to the newly established socket. The later patch will use the max delay ack specified in the SYN header and set the RTO of this newly established connection as an example. The received ACK (that concludes the 3WHS) will also be available to the bpf prog during PASSIVE_ESTABLISHED_CB through the sock_ops->skb_data. It could be useful in syncookie scenario. More on this later. There is an existing getsockopt "TCP_SAVED_SYN" to return the whole saved syn pkt which includes the IP[46] header and the TCP header. A few "TCP_BPF_SYN*" getsockopt has been added to allow specifying where to start getting from, e.g. starting from TCP header, or from IP[46] header. The new getsockopt(TCP_BPF_SYN*) will also know where it can get the SYN's packet from: - (a) the just received syn (available when the bpf prog is writing SYNACK) and it is the only way to get SYN during syncookie mode. or - (b) the saved syn (available in PASSIVE_ESTABLISHED_CB and also other existing CB). The bpf prog does not need to know where the SYN pkt is coming from. The getsockopt(TCP_BPF_SYN*) will hide this details. Similarly, a flags "BPF_LOAD_HDR_OPT_TCP_SYN" is also added to bpf_load_hdr_opt() to read a particular header option from the SYN packet. * Fastopen Fastopen should work the same as the regular non fastopen case. This is a test in a later patch. * Syncookie For syncookie, the later example patch asks the active side's bpf prog to resend the header options in ACK. The server can use bpf_load_hdr_opt() to look at the options in this received ACK during PASSIVE_ESTABLISHED_CB. * Active side The bpf prog will get a chance to write the bpf header option in the SYN packet during WRITE_HDR_OPT_CB. The received SYNACK pkt will also be available to the bpf prog during the existing ACTIVE_ESTABLISHED_CB callback through the sock_ops->skb_data and bpf_load_hdr_opt(). * Turn off header CB flags after 3WHS If the bpf prog does not need to write/parse header options beyond the 3WHS, the bpf prog can clear the bpf_sock_ops_cb_flags to avoid being called for header options. Or the bpf-prog can select to leave the UNKNOWN_HDR_OPT_CB_FLAG on so that the kernel will only call it when there is option that the kernel cannot handle. [1]: draft-wang-tcpm-low-latency-opt-00 https://tools.ietf.org/html/draft-wang-tcpm-low-latency-opt-00 Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200820190104.2885895-1-kafai@fb.com
2020-07-25bpf: Make cgroup storages shared between programs on the same cgroupYiFei Zhu1-4/+8
This change comes in several parts: One, the restriction that the CGROUP_STORAGE map can only be used by one program is removed. This results in the removal of the field 'aux' in struct bpf_cgroup_storage_map, and removal of relevant code associated with the field, and removal of now-noop functions bpf_free_cgroup_storage and bpf_cgroup_storage_release. Second, we permit a key of type u64 as the key to the map. Providing such a key type indicates that the map should ignore attach type when comparing map keys. However, for simplicity newly linked storage will still have the attach type at link time in its key struct. cgroup_storage_check_btf is adapted to accept u64 as the type of the key. Third, because the storages are now shared, the storages cannot be unconditionally freed on program detach. There could be two ways to solve this issue: * A. Reference count the usage of the storages, and free when the last program is detached. * B. Free only when the storage is impossible to be referred to again, i.e. when either the cgroup_bpf it is attached to, or the map itself, is freed. Option A has the side effect that, when the user detach and reattach a program, whether the program gets a fresh storage depends on whether there is another program attached using that storage. This could trigger races if the user is multi-threaded, and since nondeterminism in data races is evil, go with option B. The both the map and the cgroup_bpf now tracks their associated storages, and the storage unlink and free are removed from cgroup_bpf_detach and added to cgroup_bpf_release and cgroup_storage_map_free. The latter also new holds the cgroup_mutex to prevent any races with the former. Fourth, on attach, we reuse the old storage if the key already exists in the map, via cgroup_storage_lookup. If the storage does not exist yet, we create a new one, and publish it at the last step in the attach process. This does not create a race condition because for the whole attach the cgroup_mutex is held. We keep track of an array of new storages that was allocated and if the process fails only the new storages would get freed. Signed-off-by: YiFei Zhu <zhuyifei@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/d5401c6106728a00890401190db40020a1f84ff1.1595565795.git.zhuyifei@google.com
2020-07-08bpf: Add BPF_CGROUP_INET_SOCK_RELEASE hookStanislav Fomichev1-0/+4
Sometimes it's handy to know when the socket gets freed. In particular, we'd like to try to use a smarter allocation of ports for bpf_bind and explore the possibility of limiting the number of SOCK_DGRAM sockets the process can have. Implement BPF_CGROUP_INET_SOCK_RELEASE hook that triggers on inet socket release. It triggers only for userspace sockets (not in-kernel ones) and therefore has the same semantics as the existing BPF_CGROUP_INET_SOCK_CREATE. Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20200706230128.4073544-2-sdf@google.com
2020-05-19bpf: Add get{peer, sock}name attach types for sock_addrDaniel Borkmann1-0/+1
As stated in 983695fa6765 ("bpf: fix unconnected udp hooks"), the objective for the existing cgroup connect/sendmsg/recvmsg/bind BPF hooks is to be transparent to applications. In Cilium we make use of these hooks [0] in order to enable E-W load balancing for existing Kubernetes service types for all Cilium managed nodes in the cluster. Those backends can be local or remote. The main advantage of this approach is that it operates as close as possible to the socket, and therefore allows to avoid packet-based NAT given in connect/sendmsg/recvmsg hooks we only need to xlate sock addresses. This also allows to expose NodePort services on loopback addresses in the host namespace, for example. As another advantage, this also efficiently blocks bind requests for applications in the host namespace for exposed ports. However, one missing item is that we also need to perform reverse xlation for inet{,6}_getname() hooks such that we can return the service IP/port tuple back to the application instead of the remote peer address. The vast majority of applications does not bother about getpeername(), but in a few occasions we've seen breakage when validating the peer's address since it returns unexpectedly the backend tuple instead of the service one. Therefore, this trivial patch allows to customise and adds a getpeername() as well as getsockname() BPF cgroup hook for both IPv4 and IPv6 in order to address this situation. Simple example: # ./cilium/cilium service list ID Frontend Service Type Backend 1 1.2.3.4:80 ClusterIP 1 => 10.0.0.10:80 Before; curl's verbose output example, no getpeername() reverse xlation: # curl --verbose 1.2.3.4 * Rebuilt URL to: 1.2.3.4/ * Trying 1.2.3.4... * TCP_NODELAY set * Connected to 1.2.3.4 (10.0.0.10) port 80 (#0) > GET / HTTP/1.1 > Host: 1.2.3.4 > User-Agent: curl/7.58.0 > Accept: */* [...] After; with getpeername() reverse xlation: # curl --verbose 1.2.3.4 * Rebuilt URL to: 1.2.3.4/ * Trying 1.2.3.4... * TCP_NODELAY set * Connected to 1.2.3.4 (1.2.3.4) port 80 (#0) > GET / HTTP/1.1 > Host: 1.2.3.4 > User-Agent: curl/7.58.0 > Accept: */* [...] Originally, I had both under a BPF_CGROUP_INET{4,6}_GETNAME type and exposed peer to the context similar as in inet{,6}_getname() fashion, but API-wise this is suboptimal