Age | Commit message (Collapse) | Author | Files | Lines |
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Along with the usual shower of singleton patches, notable patch series
in this pull request are:
- "Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds
consistency to the APIs and behaviour of these two core allocation
functions. This also simplifies/enables Rustification.
- "Some cleanups for shmem" from Baolin Wang. No functional changes -
mode code reuse, better function naming, logic simplifications.
- "mm: some small page fault cleanups" from Josef Bacik. No
functional changes - code cleanups only.
- "Various memory tiering fixes" from Zi Yan. A small fix and a
little cleanup.
- "mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and
simplifications and .text shrinkage.
- "Kernel stack usage histogram" from Pasha Tatashin and Shakeel
Butt. This is a feature, it adds new feilds to /proc/vmstat such as
$ grep kstack /proc/vmstat
kstack_1k 3
kstack_2k 188
kstack_4k 11391
kstack_8k 243
kstack_16k 0
which tells us that 11391 processes used 4k of stack while none at
all used 16k. Useful for some system tuning things, but
partivularly useful for "the dynamic kernel stack project".
- "kmemleak: support for percpu memory leak detect" from Pavel
Tikhomirov. Teaches kmemleak to detect leaksage of percpu memory.
- "mm: memcg: page counters optimizations" from Roman Gushchin. "3
independent small optimizations of page counters".
- "mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from
David Hildenbrand. Improves PTE/PMD splitlock detection, makes
powerpc/8xx work correctly by design rather than by accident.
- "mm: remove arch_make_page_accessible()" from David Hildenbrand.
Some folio conversions which make arch_make_page_accessible()
unneeded.
- "mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David
Finkel. Cleans up and fixes our handling of the resetting of the
cgroup/process peak-memory-use detector.
- "Make core VMA operations internal and testable" from Lorenzo
Stoakes. Rationalizaion and encapsulation of the VMA manipulation
APIs. With a view to better enable testing of the VMA functions,
even from a userspace-only harness.
- "mm: zswap: fixes for global shrinker" from Takero Funaki. Fix
issues in the zswap global shrinker, resulting in improved
performance.
- "mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill
in some missing info in /proc/zoneinfo.
- "mm: replace follow_page() by folio_walk" from David Hildenbrand.
Code cleanups and rationalizations (conversion to folio_walk())
resulting in the removal of follow_page().
- "improving dynamic zswap shrinker protection scheme" from Nhat
Pham. Some tuning to improve zswap's dynamic shrinker. Significant
reductions in swapin and improvements in performance are shown.
- "mm: Fix several issues with unaccepted memory" from Kirill
Shutemov. Improvements to the new unaccepted memory feature,
- "mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on
DAX PUDs. This was missing, although nobody seems to have notied
yet.
- "Introduce a store type enum for the Maple tree" from Sidhartha
Kumar. Cleanups and modest performance improvements for the maple
tree library code.
- "memcg: further decouple v1 code from v2" from Shakeel Butt. Move
more cgroup v1 remnants away from the v2 memcg code.
- "memcg: initiate deprecation of v1 features" from Shakeel Butt.
Adds various warnings telling users that memcg v1 features are
deprecated.
- "mm: swap: mTHP swap allocator base on swap cluster order" from
Chris Li. Greatly improves the success rate of the mTHP swap
allocation.
- "mm: introduce numa_memblks" from Mike Rapoport. Moves various
disparate per-arch implementations of numa_memblk code into generic
code.
- "mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly
improves the performance of munmap() of swap-filled ptes.
- "support large folio swap-out and swap-in for shmem" from Baolin
Wang. With this series we no longer split shmem large folios into
simgle-page folios when swapping out shmem.
- "mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice
performance improvements and code reductions for gigantic folios.
- "support shmem mTHP collapse" from Baolin Wang. Adds support for
khugepaged's collapsing of shmem mTHP folios.
- "mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect()
performance regression due to the addition of mseal().
- "Increase the number of bits available in page_type" from Matthew
Wilcox. Increases the number of bits available in page_type!
- "Simplify the page flags a little" from Matthew Wilcox. Many legacy
page flags are now folio flags, so the page-based flags and their
accessors/mutators can be removed.
- "mm: store zero pages to be swapped out in a bitmap" from Usama
Arif. An optimization which permits us to avoid writing/reading
zero-filled zswap pages to backing store.
- "Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race
window which occurs when a MAP_FIXED operqtion is occurring during
an unrelated vma tree walk.
- "mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of
the vma_merge() functionality, making ot cleaner, more testable and
better tested.
- "misc fixups for DAMON {self,kunit} tests" from SeongJae Park.
Minor fixups of DAMON selftests and kunit tests.
- "mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang.
Code cleanups and folio conversions.
- "Shmem mTHP controls and stats improvements" from Ryan Roberts.
Cleanups for shmem controls and stats.
- "mm: count the number of anonymous THPs per size" from Barry Song.
Expose additional anon THP stats to userspace for improved tuning.
- "mm: finish isolate/putback_lru_page()" from Kefeng Wang: more
folio conversions and removal of now-unused page-based APIs.
- "replace per-quota region priorities histogram buffer with
per-context one" from SeongJae Park. DAMON histogram
rationalization.
- "Docs/damon: update GitHub repo URLs and maintainer-profile" from
SeongJae Park. DAMON documentation updates.
- "mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and
improve related doc and warn" from Jason Wang: fixes usage of page
allocator __GFP_NOFAIL and GFP_ATOMIC flags.
- "mm: split underused THPs" from Yu Zhao. Improve THP=always policy.
This was overprovisioning THPs in sparsely accessed memory areas.
- "zram: introduce custom comp backends API" frm Sergey Senozhatsky.
Add support for zram run-time compression algorithm tuning.
- "mm: Care about shadow stack guard gap when getting an unmapped
area" from Mark Brown. Fix up the various arch_get_unmapped_area()
implementations to better respect guard areas.
- "Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability
of mem_cgroup_iter() and various code cleanups.
- "mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge
pfnmap support.
- "resource: Fix region_intersects() vs add_memory_driver_managed()"
from Huang Ying. Fix a bug in region_intersects() for systems with
CXL memory.
- "mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches
a couple more code paths to correctly recover from the encountering
of poisoned memry.
- "mm: enable large folios swap-in support" from Barry Song. Support
the swapin of mTHP memory into appropriately-sized folios, rather
than into single-page folios"
* tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (416 commits)
zram: free secondary algorithms names
uprobes: turn xol_area->pages[2] into xol_area->page
uprobes: introduce the global struct vm_special_mapping xol_mapping
Revert "uprobes: use vm_special_mapping close() functionality"
mm: support large folios swap-in for sync io devices
mm: add nr argument in mem_cgroup_swapin_uncharge_swap() helper to support large folios
mm: fix swap_read_folio_zeromap() for large folios with partial zeromap
mm/debug_vm_pgtable: Use pxdp_get() for accessing page table entries
set_memory: add __must_check to generic stubs
mm/vma: return the exact errno in vms_gather_munmap_vmas()
memcg: cleanup with !CONFIG_MEMCG_V1
mm/show_mem.c: report alloc tags in human readable units
mm: support poison recovery from copy_present_page()
mm: support poison recovery from do_cow_fault()
resource, kunit: add test case for region_intersects()
resource: make alloc_free_mem_region() works for iomem_resource
mm: z3fold: deprecate CONFIG_Z3FOLD
vfio/pci: implement huge_fault support
mm/arm64: support large pfn mappings
mm/x86: support large pfn mappings
...
|
|
Patch series "Improve mem_cgroup_iter()", v4.
Incremental cgroup iteration is being used again [1]. This patchset
improves the reliability of mem_cgroup_iter(). It also improves
simplicity and code readability.
[1] https://lore.kernel.org/20240514202641.2821494-1-hannes@cmpxchg.org/
This patch (of 5):
Explicitly document that css sibling/descendant linkage is protected by
cgroup_mutex or RCU. Also, document in css_next_descendant_pre() and
similar functions that it isn't necessary to hold a ref on @pos.
The following changes in this patchset rely on this clarification for
simplification in memcg iteration code.
Link: https://lkml.kernel.org/r/20240905003058.1859929-1-kinseyho@google.com
Link: https://lkml.kernel.org/r/20240905003058.1859929-2-kinseyho@google.com
Suggested-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Kinsey Ho <kinseyho@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Cc: Zefan Li <lizefan.x@bytedance.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: T.J. Mercier <tjmercier@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm, memcg: cg2 memory{.swap,}.peak write handlers", v7.
This patch (of 2):
Other mechanisms for querying the peak memory usage of either a process or
v1 memory cgroup allow for resetting the high watermark. Restore parity
with those mechanisms, but with a less racy API.
For example:
- Any write to memory.max_usage_in_bytes in a cgroup v1 mount resets
the high watermark.
- writing "5" to the clear_refs pseudo-file in a processes's proc
directory resets the peak RSS.
This change is an evolution of a previous patch, which mostly copied the
cgroup v1 behavior, however, there were concerns about races/ownership
issues with a global reset, so instead this change makes the reset
filedescriptor-local.
Writing any non-empty string to the memory.peak and memory.swap.peak
pseudo-files reset the high watermark to the current usage for subsequent
reads through that same FD.
Notably, following Johannes's suggestion, this implementation moves the
O(FDs that have written) behavior onto the FD write(2) path. Instead, on
the page-allocation path, we simply add one additional watermark to
conditionally bump per-hierarchy level in the page-counter.
Additionally, this takes Longman's suggestion of nesting the
page-charging-path checks for the two watermarks to reduce the number of
common-case comparisons.
This behavior is particularly useful for work scheduling systems that need
to track memory usage of worker processes/cgroups per-work-item. Since
memory can't be squeezed like CPU can (the OOM-killer has opinions), these
systems need to track the peak memory usage to compute system/container
fullness when binpacking workitems.
Most notably, Vimeo's use-case involves a system that's doing global
binpacking across many Kubernetes pods/containers, and while we can use
PSI for some local decisions about overload, we strive to avoid packing
workloads too tightly in the first place. To facilitate this, we track
the peak memory usage. However, since we run with long-lived workers (to
amortize startup costs) we need a way to track the high watermark while a
work-item is executing. Polling runs the risk of missing short spikes
that last for timescales below the polling interval, and peak memory
tracking at the cgroup level is otherwise perfect for this use-case.
As this data is used to ensure that binpacked work ends up with sufficient
headroom, this use-case mostly avoids the inaccuracies surrounding
reclaimable memory.
Link: https://lkml.kernel.org/r/20240730231304.761942-1-davidf@vimeo.com
Link: https://lkml.kernel.org/r/20240729143743.34236-1-davidf@vimeo.com
Link: https://lkml.kernel.org/r/20240729143743.34236-2-davidf@vimeo.com
Signed-off-by: David Finkel <davidf@vimeo.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Waiman Long <longman@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Cgroup subsystem state (CSS) is an abstraction in the cgroup layer to
help manage different structures in various cgroup subsystems by being
an embedded element inside a larger structure like cpuset or mem_cgroup.
The /proc/cgroups file shows the number of cgroups for each of the
subsystems. With cgroup v1, the number of CSSes is the same as the
number of cgroups. That is not the case anymore with cgroup v2. The
/proc/cgroups file cannot show the actual number of CSSes for the
subsystems that are bound to cgroup v2.
So if a v2 cgroup subsystem is leaking cgroups (usually memory cgroup),
we can't tell by looking at /proc/cgroups which cgroup subsystems may
be responsible.
As cgroup v2 had deprecated the use of /proc/cgroups, the hierarchical
cgroup.stat file is now being extended to show the number of live and
dying CSSes associated with all the non-inhibited cgroup subsystems that
have been bound to cgroup v2. The number includes CSSes in the current
cgroup as well as in all the descendants underneath it. This will help
us pinpoint which subsystems are responsible for the increasing number
of dying (nr_dying_descendants) cgroups.
The CSSes dying counts are stored in the cgroup structure itself
instead of inside the CSS as suggested by Johannes. This will allow
us to accurately track dying counts of cgroup subsystems that have
recently been disabled in a cgroup. It is now possible that a zero
subsystem number is coupled with a non-zero dying subsystem number.
The cgroup-v2.rst file is updated to discuss this new behavior.
With this patch applied, a sample output from root cgroup.stat file
was shown below.
nr_descendants 56
nr_subsys_cpuset 1
nr_subsys_cpu 43
nr_subsys_io 43
nr_subsys_memory 56
nr_subsys_perf_event 57
nr_subsys_hugetlb 1
nr_subsys_pids 56
nr_subsys_rdma 1
nr_subsys_misc 1
nr_dying_descendants 30
nr_dying_subsys_cpuset 0
nr_dying_subsys_cpu 0
nr_dying_subsys_io 0
nr_dying_subsys_memory 30
nr_dying_subsys_perf_event 0
nr_dying_subsys_hugetlb 0
nr_dying_subsys_pids 0
nr_dying_subsys_rdma 0
nr_dying_subsys_misc 0
Another sample output from system.slice/cgroup.stat was:
nr_descendants 34
nr_subsys_cpuset 0
nr_subsys_cpu 32
nr_subsys_io 32
nr_subsys_memory 34
nr_subsys_perf_event 35
nr_subsys_hugetlb 0
nr_subsys_pids 34
nr_subsys_rdma 0
nr_subsys_misc 0
nr_dying_descendants 30
nr_dying_subsys_cpuset 0
nr_dying_subsys_cpu 0
nr_dying_subsys_io 0
nr_dying_subsys_memory 30
nr_dying_subsys_perf_event 0
nr_dying_subsys_hugetlb 0
nr_dying_subsys_pids 0
nr_dying_subsys_rdma 0
nr_dying_subsys_misc 0
Note that 'debug' controller wasn't used to provide this information because
the controller is not recommended in productions kernels, also many of them
won't enable CONFIG_CGROUP_DEBUG by default.
Similar information could be retrieved with debuggers like drgn but that's
also not always available (e.g. lockdown) and the additional cost of runtime
tracking here is deemed marginal.
tj: Added Michal's paragraphs on why this is not added the debug controller
to the commit message.
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Reviewed-by: Kamalesh Babulal <kamalesh.babulal@oracle.com>
Cc: Michal Koutný <mkoutny@suse.com>
Link: http://lkml.kernel.org/r/20240715150034.2583772-1-longman@redhat.com
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
Pull more block updates from Jens Axboe:
- MD fixes via Song:
- md-cluster fixes (Heming Zhao)
- raid1 fix (Mateusz Jończyk)
- s390/dasd module description (Jeff)
- Series cleaning up and hardening the blk-mq debugfs flag handling
(John, Christoph)
- blk-cgroup cleanup (Xiu)
- Error polled IO attempts if backend doesn't support it (hexue)
- Fix for an sbitmap hang (Yang)
* tag 'for-6.11/block-20240722' of git://git.kernel.dk/linux: (23 commits)
blk-cgroup: move congestion_count to struct blkcg
sbitmap: fix io hung due to race on sbitmap_word::cleared
block: avoid polling configuration errors
block: Catch possible entries missing from rqf_name[]
block: Simplify definition of RQF_NAME()
block: Use enum to define RQF_x bit indexes
block: Catch possible entries missing from cmd_flag_name[]
block: Catch possible entries missing from alloc_policy_name[]
block: Catch possible entries missing from hctx_flag_name[]
block: Catch possible entries missing from hctx_state_name[]
block: Catch possible entries missing from blk_queue_flag_name[]
block: Make QUEUE_FLAG_x as an enum
block: Relocate BLK_MQ_MAX_DEPTH
block: Relocate BLK_MQ_CPU_WORK_BATCH
block: remove QUEUE_FLAG_STOPPED
block: Add missing entry to hctx_flag_name[]
block: Add zone write plugging entry to rqf_name[]
block: Add missing entries from cmd_flag_name[]
s390/dasd: fix error checks in dasd_copy_pair_store()
s390/dasd: add missing MODULE_DESCRIPTION() macros
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- In the series "mm: Avoid possible overflows in dirty throttling" Jan
Kara addresses a couple of issues in the writeback throttling code.
These fixes are also targetted at -stable kernels.
- Ryusuke Konishi's series "nilfs2: fix potential issues related to
reserved inodes" does that. This should actually be in the
mm-nonmm-stable tree, along with the many other nilfs2 patches. My
bad.
- More folio conversions from Kefeng Wang in the series "mm: convert to
folio_alloc_mpol()"
- Kemeng Shi has sent some cleanups to the writeback code in the series
"Add helper functions to remove repeated code and improve readability
of cgroup writeback"
- Kairui Song has made the swap code a little smaller and a little
faster in the series "mm/swap: clean up and optimize swap cache
index".
- In the series "mm/memory: cleanly support zeropage in
vm_insert_page*(), vm_map_pages*() and vmf_insert_mixed()" David
Hildenbrand has reworked the rather sketchy handling of the use of
the zeropage in MAP_SHARED mappings. I don't see any runtime effects
here - more a cleanup/understandability/maintainablity thing.
- Dev Jain has improved selftests/mm/va_high_addr_switch.c's handling
of higher addresses, for aarch64. The (poorly named) series is
"Restructure va_high_addr_switch".
- The core TLB handling code gets some cleanups and possible slight
optimizations in Bang Li's series "Add update_mmu_tlb_range() to
simplify code".
- Jane Chu has improved the handling of our
fake-an-unrecoverable-memory-error testing feature MADV_HWPOISON in
the series "Enhance soft hwpoison handling and injection".
- Jeff Johnson has sent a billion patches everywhere to add
MODULE_DESCRIPTION() to everything. Some landed in this pull.
- In the series "mm: cleanup MIGRATE_SYNC_NO_COPY mode", Kefeng Wang
has simplified migration's use of hardware-offload memory copying.
- Yosry Ahmed performs more folio API conversions in his series "mm:
zswap: trivial folio conversions".
- In the series "large folios swap-in: handle refault cases first",
Chuanhua Han inches us forward in the handling of large pages in the
swap code. This is a cleanup and optimization, working toward the end
objective of full support of large folio swapin/out.
- In the series "mm,swap: cleanup VMA based swap readahead window
calculation", Huang Ying has contributed some cleanups and a possible
fixlet to his VMA based swap readahead code.
- In the series "add mTHP support for anonymous shmem" Baolin Wang has
taught anonymous shmem mappings to use multisize THP. By default this
is a no-op - users must opt in vis sysfs controls. Dramatic
improvements in pagefault latency are realized.
- David Hildenbrand has some cleanups to our remaining use of
page_mapcount() in the series "fs/proc: move page_mapcount() to
fs/proc/internal.h".
- David also has some highmem accounting cleanups in the series
"mm/highmem: don't track highmem pages manually".
- Build-time fixes and cleanups from John Hubbard in the series
"cleanups, fixes, and progress towards avoiding "make headers"".
- Cleanups and consolidation of the core pagemap handling from Barry
Song in the series "mm: introduce pmd|pte_needs_soft_dirty_wp helpers
and utilize them".
- Lance Yang's series "Reclaim lazyfree THP without splitting" has
reduced the latency of the reclaim of pmd-mapped THPs under fairly
common circumstances. A 10x speedup is seen in a microbenchmark.
It does this by punting to aother CPU but I guess that's a win unless
all CPUs are pegged.
- hugetlb_cgroup cleanups from Xiu Jianfeng in the series
"mm/hugetlb_cgroup: rework on cftypes".
- Miaohe Lin's series "Some cleanups for memory-failure" does just that
thing.
- Someone other than SeongJae has developed a DAMON feature in Honggyu
Kim's series "DAMON based tiered memory management for CXL memory".
This adds DAMON features which may be used to help determine the
efficiency of our placement of CXL/PCIe attached DRAM.
- DAMON user API centralization and simplificatio work in SeongJae
Park's series "mm/damon: introduce DAMON parameters online commit
function".
- In the series "mm: page_type, zsmalloc and page_mapcount_reset()"
David Hildenbrand does some maintenance work on zsmalloc - partially
modernizing its use of pageframe fields.
- Kefeng Wang provides more folio conversions in the series "mm: remove
page_maybe_dma_pinned() and page_mkclean()".
- More cleanup from David Hildenbrand, this time in the series
"mm/memory_hotplug: use PageOffline() instead of PageReserved() for
!ZONE_DEVICE". It "enlightens memory hotplug more about PageOffline()
pages" and permits the removal of some virtio-mem hacks.
- Barry Song's series "mm: clarify folio_add_new_anon_rmap() and
__folio_add_anon_rmap()" is a cleanup to the anon folio handling in
preparation for mTHP (multisize THP) swapin.
- Kefeng Wang's series "mm: improve clear and copy user folio"
implements more folio conversions, this time in the area of large
folio userspace copying.
- The series "Docs/mm/damon/maintaier-profile: document a mailing tool
and community meetup series" tells people how to get better involved
with other DAMON developers. From SeongJae Park.
- A large series ("kmsan: Enable on s390") from Ilya Leoshkevich does
that.
- David Hildenbrand sends along more cleanups, this time against the
migration code. The series is "mm/migrate: move NUMA hinting fault
folio isolation + checks under PTL".
- Jan Kara has found quite a lot of strangenesses and minor errors in
the readahead code. He addresses this in the series "mm: Fix various
readahead quirks".
- SeongJae Park's series "selftests/damon: test DAMOS tried regions and
{min,max}_nr_regions" adds features and addresses errors in DAMON's
self testing code.
- Gavin Shan has found a userspace-triggerable WARN in the pagecache
code. The series "mm/filemap: Limit page cache size to that supported
by xarray" addresses this. The series is marked cc:stable.
- Chengming Zhou's series "mm/ksm: cmp_and_merge_page() optimizations
and cleanup" cleans up and slightly optimizes KSM.
- Roman Gushchin has separated the memcg-v1 and memcg-v2 code - lots of
code motion. The series (which also makes the memcg-v1 code
Kconfigurable) are "mm: memcg: separate legacy cgroup v1 code and put
under config option" and "mm: memcg: put cgroup v1-specific memcg
data under CONFIG_MEMCG_V1"
- Dan Schatzberg's series "Add swappiness argument to memory.reclaim"
adds an additional feature to this cgroup-v2 control file.
- The series "Userspace controls soft-offline pages" from Jiaqi Yan
permits userspace to stop the kernel's automatic treatment of
excessive correctable memory errors. In order to permit userspace to
monitor and handle this situation.
- Kefeng Wang's series "mm: migrate: support poison recover from
migrate folio" teaches the kernel to appropriately handle migration
from poisoned source folios rather than simply panicing.
- SeongJae Park's series "Docs/damon: minor fixups and improvements"
does those things.
- In the series "mm/zsmalloc: change back to per-size_class lock"
Chengming Zhou improves zsmalloc's scalability and memory
utilization.
- Vivek Kasireddy's series "mm/gup: Introduce memfd_pin_folios() for
pinning memfd folios" makes the GUP code use FOLL_PIN rather than
bare refcount increments. So these paes can first be moved aside if
they reside in the movable zone or a CMA block.
- Andrii Nakryiko has added a binary ioctl()-based API to
/proc/pid/maps for much faster reading of vma information. The series
is "query VMAs from /proc/<pid>/maps".
- In the series "mm: introduce per-order mTHP split counters" Lance
Yang improves the kernel's presentation of developer information
related to multisize THP splitting.
- Michael Ellerman has developed the series "Reimplement huge pages
without hugepd on powerpc (8xx, e500, book3s/64)". This permits
userspace to use all available huge page sizes.
- In the series "revert unconditional slab and page allocator fault
injection calls" Vlastimil Babka removes a performance-affecting and
not very useful feature from slab fault injection.
* tag 'mm-stable-2024-07-21-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (411 commits)
mm/mglru: fix ineffective protection calculation
mm/zswap: fix a white space issue
mm/hugetlb: fix kernel NULL pointer dereference when migrating hugetlb folio
mm/hugetlb: fix possible recursive locking detected warning
mm/gup: clear the LRU flag of a page before adding to LRU batch
mm/numa_balancing: teach mpol_to_str about the balancing mode
mm: memcg1: convert charge move flags to unsigned long long
alloc_tag: fix page_ext_get/page_ext_put sequence during page splitting
lib: reuse page_ext_data() to obtain codetag_ref
lib: add missing newline character in the warning message
mm/mglru: fix overshooting shrinker memory
mm/mglru: fix div-by-zero in vmpressure_calc_level()
mm/kmemleak: replace strncpy() with strscpy()
mm, page_alloc: put should_fail_alloc_page() back behing CONFIG_FAIL_PAGE_ALLOC
mm, slab: put should_failslab() back behind CONFIG_SHOULD_FAILSLAB
mm: ignore data-race in __swap_writepage
hugetlbfs: ensure generic_hugetlb_get_unmapped_area() returns higher address than mmap_min_addr
mm: shmem: rename mTHP shmem counters
mm: swap_state: use folio_alloc_mpol() in __read_swap_cache_async()
mm/migrate: putback split folios when numa hint migration fails
...
|
|
The congestion_count was introduced into the struct cgroup by
commit d09d8df3a294 ("blkcg: add generic throttling mechanism"),
but since it is closely related to the blkio subsys, it is not
appropriate to put it in the struct cgroup, so let's move it to
struct blkcg. There should be no functional changes because blkcg
is per cgroup.
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20240716133058.3491350-1-xiujianfeng@huawei.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Unlike other cgroup subsystems, the hugetlb cgroup does not provide a
static array of cftype that explicitly displays the properties, handling
functions, etc., of each file. Instead, it dynamically creates the
attribute of cftypes based on the hstate during the startup procedure.
This reduces the readability of the code.
To fix this issue, introduce two templates of cftypes, and rebuild the
attributes according to the hstate to make it ready to be added to cgroup
framework.
Link: https://lkml.kernel.org/r/20240612092409.2027592-3-xiujianfeng@huawei.com
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: kernel test robot <oliver.sang@intel.com>
From: Xiu Jianfeng <xiujianfeng@huawei.com>
Subject: mm/hugetlb_cgroup: register lockdep key for cftype
Date: Tue, 18 Jun 2024 07:19:22 +0000
When CONFIG_DEBUG_LOCK_ALLOC is enabled, the following commands can
trigger a bug,
mount -t cgroup2 none /sys/fs/cgroup
cd /sys/fs/cgroup
echo "+hugetlb" > cgroup.subtree_control
The log is as below:
BUG: key ffff8880046d88d8 has not been registered!
------------[ cut here ]------------
DEBUG_LOCKS_WARN_ON(1)
WARNING: CPU: 3 PID: 226 at kernel/locking/lockdep.c:4945 lockdep_init_map_type+0x185/0x220
Modules linked in:
CPU: 3 PID: 226 Comm: bash Not tainted 6.10.0-rc4-next-20240617-g76db4c64526c #544
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:lockdep_init_map_type+0x185/0x220
Code: 00 85 c0 0f 84 6c ff ff ff 8b 3d 6a d1 85 01 85 ff 0f 85 5e ff ff ff 48 c7 c6 21 99 4a 82 48 c7 c7 60 29 49 82 e8 3b 2e f5
RSP: 0018:ffffc9000083fc30 EFLAGS: 00000282
RAX: 0000000000000000 RBX: ffffffff828dd820 RCX: 0000000000000027
RDX: ffff88803cd9cac8 RSI: 0000000000000001 RDI: ffff88803cd9cac0
RBP: ffff88800674fbb0 R08: ffffffff828ce248 R09: 00000000ffffefff
R10: ffffffff8285e260 R11: ffffffff828b8eb8 R12: ffff8880046d88d8
R13: 0000000000000000 R14: 0000000000000000 R15: ffff8880067281c0
FS: 00007f68601ea740(0000) GS:ffff88803cd80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005614f3ebc740 CR3: 000000000773a000 CR4: 00000000000006f0
Call Trace:
<TASK>
? __warn+0x77/0xd0
? lockdep_init_map_type+0x185/0x220
? report_bug+0x189/0x1a0
? handle_bug+0x3c/0x70
? exc_invalid_op+0x18/0x70
? asm_exc_invalid_op+0x1a/0x20
? lockdep_init_map_type+0x185/0x220
__kernfs_create_file+0x79/0x100
cgroup_addrm_files+0x163/0x380
? find_held_lock+0x2b/0x80
? find_held_lock+0x2b/0x80
? find_held_lock+0x2b/0x80
css_populate_dir+0x73/0x180
cgroup_apply_control_enable+0x12f/0x3a0
cgroup_subtree_control_write+0x30b/0x440
kernfs_fop_write_iter+0x13a/0x1f0
vfs_write+0x341/0x450
ksys_write+0x64/0xe0
do_syscall_64+0x4b/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f68602d9833
Code: 8b 15 61 26 0e 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 64 8b 04 25 18 00 00 00 85 c0 75 14 b8 01 00 00 00 08
RSP: 002b:00007fff9bbdf8e8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000000009 RCX: 00007f68602d9833
RDX: 0000000000000009 RSI: 00005614f3ebc740 RDI: 0000000000000001
RBP: 00005614f3ebc740 R08: 000000000000000a R09: 0000000000000008
R10: 00005614f3db6ba0 R11: 0000000000000246 R12: 0000000000000009
R13: 00007f68603bd6a0 R14: 0000000000000009 R15: 00007f68603b8880
For lockdep, there is a sanity check in lockdep_init_map_type(), the
lock-class key must either have been allocated statically or must
have been registered as a dynamic key. However the commit e18df2889ff9
("mm/hugetlb_cgroup: prepare cftypes based on template") has changed
the cftypes from static allocated objects to dynamic allocated objects,
so the cft->lockdep_key must be registered proactively.
[xiujianfeng@huawei.com: fix BUG()]
Link: https://lkml.kernel.org/r/20240619015527.2212698-1-xiujianfeng@huawei.com
Link: https://lkml.kernel.org/r/20240618071922.2127289-1-xiujianfeng@huawei.com
Link: https://lore.kernel.org/all/602186b3-5ce3-41b3-90a3-134792cc2a48@samsung.com/
Fixes: e18df2889ff9 ("mm/hugetlb_cgroup: prepare cftypes based on template")
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Closes: https://lore.kernel.org/oe-lkp/202406181046.8d8b2492-oliver.sang@intel.com
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: SeongJae Park <sj@kernel.org>
Closes: https://lore.kernel.org/20240618233608.400367-1-sj@kernel.org
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently, when pids.max limit is breached in the hierarchy, the event
is counted and reported in the cgroup where the forking task resides.
This decouples the limit and the notification caused by the limit making
it hard to detect when the actual limit was effected.
Redefine the pids.events:max as: the number of times the limit of the
cgroup was hit.
(Implementation differentiates also "forkfail" event but this is
currently not exposed as it would better fit into pids.stat. It also
differs from pids.events:max only when pids.max is configured on
non-leaf cgroups.)
Since it changes semantics of the original "max" event, introduce this
change only in the v2 API of the controller and add a cgroup2 mount
option to revert to the legacy behavior.
Signed-off-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
Commit d23b5c577715 ("cgroup: Make operations on the cgroup root_list RCU
safe") adds a new rcu_head to the cgroup_root structure and kvfree_rcu()
for freeing the cgroup_root.
The current implementation of kvfree_rcu(), however, has the limitation
that the offset of the rcu_head structure within the larger data
structure must be less than 4096 or the compilation will fail. See the
macro definition of __is_kvfree_rcu_offset() in include/linux/rcupdate.h
for more information.
By putting rcu_head below the large cgroup structure, any change to the
cgroup structure that makes it larger run the risk of causing build
failure under certain configurations. Commit 77070eeb8821 ("cgroup:
Avoid false cacheline sharing of read mostly rstat_cpu") happens to be
the last straw that breaks it. Fix this problem by moving the rcu_head
structure up before the cgroup structure.
Fixes: d23b5c577715 ("cgroup: Make operations on the cgroup root_list RCU safe")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Closes: https://lore.kernel.org/lkml/20231207143806.114e0a74@canb.auug.org.au/
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Yafang Shao <laoar.shao@gmail.com>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
The rstat_cpu and also rstat_css_list of the cgroup structure are read
mostly variables. However, they may share the same cacheline as the
subsequent rstat_flush_next and *bstat variables which can be updated
frequently. That will slow down the cgroup_rstat_cpu() call which is
called pretty frequently in the rstat code. Add a CACHELINE_PADDING()
line in between them to avoid false cacheline sharing.
A parallel kernel build on a 2-socket x86-64 server is used as the
benchmarking tool for measuring the lock hold time. Below were the lock
hold time frequency distribution before and after the patch:
Run time Before patch After patch
-------- ------------ -----------
0-01 us 9,928,562 9,820,428
01-05 us 110,151 50,935
05-10 us 270 93
10-15 us 273 146
15-20 us 135 76
20-25 us 0 2
25-30 us 1 0
It can be seen that the patch further pushes the lock hold time towards
the lower end.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
When cgroup_rstat_updated() isn't being called concurrently with
cgroup_rstat_flush_locked(), its run time is pretty short. When
both are called concurrently, the cgroup_rstat_updated() run time
can spike to a pretty high value due to high cpu_lock hold time in
cgroup_rstat_flush_locked(). This can be problematic if the task calling
cgroup_rstat_updated() is a realtime task running on an isolated CPU
with a strict latency requirement. The cgroup_rstat_updated() call can
happen when there is a page fault even though the task is running in
user space most of the time.
The percpu cpu_lock is used to protect the update tree -
updated_next and updated_children. This protection is only needed when
cgroup_rstat_cpu_pop_updated() is being called. The subsequent flushing
operation which can take a much longer time does not need that protection
as it is already protected by cgroup_rstat_lock.
To reduce the cpu_lock hold time, we need to perform all the
cgroup_rstat_cpu_pop_updated() calls up front with the lock
released afterward before doing any flushing. This patch adds a new
cgroup_rstat_updated_list() function to return a singly linked list of
cgroups to be flushed.
Some instrumentation code are added to measure the cpu_lock hold time
right after lock acquisition to after releasing the lock. Parallel
kernel build on a 2-socket x86-64 server is used as the benchmarking
tool for measuring the lock hold time.
The maximum cpu_lock hold time before and after the patch are 100us and
29us respectively. So the worst case time is reduced to about 30% of
the original. However, there may be some OS or hardware noises like NMI
or SMI in the test system that can worsen the worst case value. Those
noises are usually tuned out in a real production environment to get
a better result.
OTOH, the lock hold time frequency distribution should give a better
idea of the performance benefit of the patch. Below were the frequency
distribution before and after the patch:
Hold time Before patch After patch
--------- ------------ -----------
0-01 us 804,139 13,738,708
01-05 us 9,772,767 1,177,194
05-10 us 4,595,028 4,984
10-15 us 303,481 3,562
15-20 us 78,971 1,314
20-25 us 24,583 18
25-30 us 6,908 12
30-40 us 8,015
40-50 us 2,192
50-60 us 316
60-70 us 43
70-80 us 7
80-90 us 2
>90 us 3
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
At present, when we perform operations on the cgroup root_list, we must
hold the cgroup_mutex, which is a relatively heavyweight lock. In reality,
we can make operations on this list RCU-safe, eliminating the need to hold
the cgroup_mutex during traversal. Modifications to the list only occur in
the cgroup root setup and destroy paths, which should be infrequent in a
production environment. In contrast, traversal may occur frequently.
Therefore, making it RCU-safe would be beneficial.
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Many singleton patches against the MM code. The patch series which are
included in this merge do the following:
- Kemeng Shi has contributed some compation maintenance work in the
series 'Fixes and cleanups to compaction'
- Joel Fernandes has a patchset ('Optimize mremap during mutual
alignment within PMD') which fixes an obscure issue with mremap()'s
pagetable handling during a subsequent exec(), based upon an
implementation which Linus suggested
- More DAMON/DAMOS maintenance and feature work from SeongJae Park i
the following patch series:
mm/damon: misc fixups for documents, comments and its tracepoint
mm/damon: add a tracepoint for damos apply target regions
mm/damon: provide pseudo-moving sum based access rate
mm/damon: implement DAMOS apply intervals
mm/damon/core-test: Fix memory leaks in core-test
mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval
- In the series 'Do not try to access unaccepted memory' Adrian
Hunter provides some fixups for the recently-added 'unaccepted
memory' feature. To increase the feature's checking coverage. 'Plug
a few gaps where RAM is exposed without checking if it is
unaccepted memory'
- In the series 'cleanups for lockless slab shrink' Qi Zheng has done
some maintenance work which is preparation for the lockless slab
shrinking code
- Qi Zheng has redone the earlier (and reverted) attempt to make slab
shrinking lockless in the series 'use refcount+RCU method to
implement lockless slab shrink'
- David Hildenbrand contributes some maintenance work for the rmap
code in the series 'Anon rmap cleanups'
- Kefeng Wang does more folio conversions and some maintenance work
in the migration code. Series 'mm: migrate: more folio conversion
and unification'
- Matthew Wilcox has fixed an issue in the buffer_head code which was
causing long stalls under some heavy memory/IO loads. Some cleanups
were added on the way. Series 'Add and use bdev_getblk()'
- In the series 'Use nth_page() in place of direct struct page
manipulation' Zi Yan has fixed a potential issue with the direct
manipulation of hugetlb page frames
- In the series 'mm: hugetlb: Skip initialization of gigantic tail
struct pages if freed by HVO' has improved our handling of gigantic
pages in the hugetlb vmmemmep optimizaton code. This provides
significant boot time improvements when significant amounts of
gigantic pages are in use
- Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code
rationalization and folio conversions in the hugetlb code
- Yin Fengwei has improved mlock()'s handling of large folios in the
series 'support large folio for mlock'
- In the series 'Expose swapcache stat for memcg v1' Liu Shixin has
added statistics for memcg v1 users which are available (and
useful) under memcg v2
- Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable)
prctl so that userspace may direct the kernel to not automatically
propagate the denial to child processes. The series is named 'MDWE
without inheritance'
- Kefeng Wang has provided the series 'mm: convert numa balancing
functions to use a folio' which does what it says
- In the series 'mm/ksm: add fork-exec support for prctl' Stefan
Roesch makes is possible for a process to propagate KSM treatment
across exec()
- Huang Ying has enhanced memory tiering's calculation of memory
distances. This is used to permit the dax/kmem driver to use 'high
bandwidth memory' in addition to Optane Data Center Persistent
Memory Modules (DCPMM). The series is named 'memory tiering:
calculate abstract distance based on ACPI HMAT'
- In the series 'Smart scanning mode for KSM' Stefan Roesch has
optimized KSM by teaching it to retain and use some historical
information from previous scans
- Yosry Ahmed has fixed some inconsistencies in memcg statistics in
the series 'mm: memcg: fix tracking of pending stats updates
values'
- In the series 'Implement IOCTL to get and optionally clear info
about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap
which permits us to atomically read-then-clear page softdirty
state. This is mainly used by CRIU
- Hugh Dickins contributed the series 'shmem,tmpfs: general
maintenance', a bunch of relatively minor maintenance tweaks to
this code
- Matthew Wilcox has increased the use of the VMA lock over
file-backed page faults in the series 'Handle more faults under the
VMA lock'. Some rationalizations of the fault path became possible
as a result
- In the series 'mm/rmap: convert page_move_anon_rmap() to
folio_move_anon_rmap()' David Hildenbrand has implemented some
cleanups and folio conversions
- In the series 'various improvements to the GUP interface' Lorenzo
Stoakes has simplified and improved the GUP interface with an eye
to providing groundwork for future improvements
- Andrey Konovalov has sent along the series 'kasan: assorted fixes
and improvements' which does those things
- Some page allocator maintenance work from Kemeng Shi in the series
'Two minor cleanups to break_down_buddy_pages'
- In thes series 'New selftest for mm' Breno Leitao has developed
another MM self test which tickles a race we had between madvise()
and page faults
- In the series 'Add folio_end_read' Matthew Wilcox provides cleanups
and an optimization to the core pagecache code
- Nhat Pham has added memcg accounting for hugetlb memory in the
series 'hugetlb memcg accounting'
- Cleanups and rationalizations to the pagemap code from Lorenzo
Stoakes, in the series 'Abstract vma_merge() and split_vma()'
- Audra Mitchell has fixed issues in the procfs page_owner code's new
timestamping feature which was causing some misbehaviours. In the
series 'Fix page_owner's use of free timestamps'
- Lorenzo Stoakes has fixed the handling of new mappings of sealed
files in the series 'permit write-sealed memfd read-only shared
mappings'
- Mike Kravetz has optimized the hugetlb vmemmap optimization in the
series 'Batch hugetlb vmemmap modification operations'
- Some buffer_head folio conversions and cleanups from Matthew Wilcox
in the series 'Finish the create_empty_buffers() transition'
- As a page allocator performance optimization Huang Ying has added
automatic tuning to the allocator's per-cpu-pages feature, in the
series 'mm: PCP high auto-tuning'
- Roman Gushchin has contributed the patchset 'mm: improve
performance of accounted kernel memory allocations' which improves
their performance by ~30% as measured by a micro-benchmark
- folio conversions from Kefeng Wang in the series 'mm: convert page
cpupid functions to folios'
- Some kmemleak fixups in Liu Shixin's series 'Some bugfix about
kmemleak'
- Qi Zheng has improved our handling of memoryless nodes by keeping
them off the allocation fallback list. This is done in the series
'handle memoryless nodes more appropriately'
- khugepaged conversions from Vishal Moola in the series 'Some
khugepaged folio conversions'"
[ bcachefs conflicts with the dynamically allocated shrinkers have been
resolved as per Stephen Rothwell in
https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/
with help from Qi Zheng.
The clone3 test filtering conflict was half-arsed by yours truly ]
* tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits)
mm/damon/sysfs: update monitoring target regions for online input commit
mm/damon/sysfs: remove requested targets when online-commit inputs
selftests: add a sanity check for zswap
Documentation: maple_tree: fix word spelling error
mm/vmalloc: fix the unchecked dereference warning in vread_iter()
zswap: export compression failure stats
Documentation: ubsan: drop "the" from article title
mempolicy: migration attempt to match interleave nodes
mempolicy: mmap_lock is not needed while migrating folios
mempolicy: alloc_pages_mpol() for NUMA policy without vma
mm: add page_rmappable_folio() wrapper
mempolicy: remove confusing MPOL_MF_LAZY dead code
mempolicy: mpol_shared_policy_init() without pseudo-vma
mempolicy trivia: use pgoff_t in shared mempolicy tree
mempolicy trivia: slightly more consistent naming
mempolicy trivia: delete those ancient pr_debug()s
mempolicy: fix migrate_pages(2) syscall return nr_failed
kernfs: drop shared NUMA mempolicy hooks
hugetlbfs: drop shared NUMA mempolicy pretence
mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets()
...
|
|
Currently, hugetlb memory usage is not acounted for in the memory
controller, which could lead to memory overprotection for cgroups with
hugetlb-backed memory. This has been observed in our production system.
For instance, here is one of our usecases: suppose there are two 32G
containers. The machine is booted with hugetlb_cma=6G, and each container
may or may not use up to 3 gigantic page, depending on the workload within
it. The rest is anon, cache, slab, etc. We can set the hugetlb cgroup
limit of each cgroup to 3G to enforce hugetlb fairness. But it is very
difficult to configure memory.max to keep overall consumption, including
anon, cache, slab etc. fair.
What we have had to resort to is to constantly poll hugetlb usage and
readjust memory.max. Similar procedure is done to other memory limits
(memory.low for e.g). However, this is rather cumbersome and buggy.
Furthermore, when there is a delay in memory limits correction, (for e.g
when hugetlb usage changes within consecutive runs of the userspace
agent), the system could be in an over/underprotected state.
This patch rectifies this issue by charging the memcg when the hugetlb
folio is utilized, and uncharging when the folio is freed (analogous to
the hugetlb controller). Note that we do not charge when the folio is
allocated to the hugetlb pool, because at this point it is not owned by
any memcg.
Some caveats to consider:
* This feature is only available on cgroup v2.
* There is no hugetlb pool management involved in the memory
controller. As stated above, hugetlb folios are only charged towards
the memory controller when it is used. Host overcommit management
has to consider it when configuring hard limits.
* Failure to charge towards the memcg results in SIGBUS. This could
happen even if the hugetlb pool still has pages (but the cgroup
limit is hit and reclaim attempt fails).
* When this feature is enabled, hugetlb pages contribute to memory
reclaim protection. low, min limits tuning must take into account
hugetlb memory.
* Hugetlb pages utilized while this option is not selected will not
be tracked by the memory controller (even if cgroup v2 is remounted
later on).
Link: https://lkml.kernel.org/r/20231006184629.155543-4-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Frank van der Linden <fvdl@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Tejun heo <tj@kernel.org>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Since commit f0d9a5f17575 ("cgroup: make css_set_rwsem a spinlock
and rename it to css_set_lock"), css_set_rwsem has been replaced by
css_set_lock. That commit, however, missed the css_set_rwsem reference
in include/linux/cgroup-defs.h. Fix that by changing it to css_set_lock
as well.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:
- Per-cpu cpu usage stats are now tracked
This currently isn't printed out in the cgroupfs interface and can
only be accessed through e.g. BPF. Should decide on a not-too-ugly
way to show per-cpu stats in cgroupfs
- cpuset received some cleanups and |