summaryrefslogtreecommitdiff
path: root/include/linux/hugetlb.h
AgeCommit message (Collapse)AuthorFilesLines
2024-09-26mm/hugetlb: fix memfd_pin_folios resv_huge_pages leakSteve Sistare1-0/+10
memfd_pin_folios followed by unpin_folios leaves resv_huge_pages elevated if the pages were not already faulted in. During a normal page fault, resv_huge_pages is consumed here: hugetlb_fault() alloc_hugetlb_folio() dequeue_hugetlb_folio_vma() dequeue_hugetlb_folio_nodemask() dequeue_hugetlb_folio_node_exact() free_huge_pages-- resv_huge_pages-- During memfd_pin_folios, the page is created by calling alloc_hugetlb_folio_nodemask instead of alloc_hugetlb_folio, and resv_huge_pages is not modified: memfd_alloc_folio() alloc_hugetlb_folio_nodemask() dequeue_hugetlb_folio_nodemask() dequeue_hugetlb_folio_node_exact() free_huge_pages-- alloc_hugetlb_folio_nodemask has other callers that must not modify resv_huge_pages. Therefore, to fix, define an alternate version of alloc_hugetlb_folio_nodemask for this call site that adjusts resv_huge_pages. Link: https://lkml.kernel.org/r/1725373521-451395-4-git-send-email-steven.sistare@oracle.com Fixes: 89c1905d9c14 ("mm/gup: introduce memfd_pin_folios() for pinning memfd folios") Signed-off-by: Steve Sistare <steven.sistare@oracle.com> Acked-by: Vivek Kasireddy <vivek.kasireddy@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Peter Xu <peterx@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-03mm/hugetlb: use __GFP_COMP for gigantic foliosYu Zhao1-4/+5
Use __GFP_COMP for gigantic folios to greatly reduce not only the amount of code but also the allocation and free time. LOC (approximately): +60, -240 Allocate and free 500 1GB hugeTLB memory without HVO by: time echo 500 >/sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages time echo 0 >/sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages Before After Alloc ~13s ~10s Free ~15s <1s The above magnitude generally holds for multiple x86 and arm64 CPU models. Link: https://lkml.kernel.org/r/20240814035451.773331-4-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Reported-by: Frank van der Linden <fvdl@google.com> Acked-by: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-01mm/hugetlb: remove hugetlb_follow_page_mask() leftoverDavid Hildenbrand1-3/+0
We removed hugetlb_follow_page_mask() in commit 9cb28da54643 ("mm/gup: handle hugetlb in the generic follow_page_mask code") but forgot to cleanup some leftovers. While at it, simplify the hugetlb comment, it's overly detailed and rather confusing. Stating that we may end up in there during coredumping is sufficient to explain the PF_DUMPCORE usage. Link: https://lkml.kernel.org/r/20240731142000.625044-1-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Peter Xu <peterx@redhat.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christian Brauner <brauner@kernel.org> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-01mm/hugetlb: enforce that PMD PT sharing has split PMD PT locksDavid Hildenbrand1-3/+2
Sharing page tables between processes but falling back to per-MM page table locks cannot possibly work. So, let's make sure that we do have split PMD locks by adding a new Kconfig option and letting that depend on CONFIG_SPLIT_PMD_PTLOCKS. Link: https://lkml.kernel.org/r/20240726150728.3159964-3-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Borislav Petkov <bp@alien8.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Muchun Song <muchun.song@linux.dev> Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Xu <peterx@redhat.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-08-15mm/hugetlb: fix hugetlb vs. core-mm PT lockingDavid Hildenbrand1-3/+30
We recently made GUP's common page table walking code to also walk hugetlb VMAs without most hugetlb special-casing, preparing for the future of having less hugetlb-specific page table walking code in the codebase. Turns out that we missed one page table locking detail: page table locking for hugetlb folios that are not mapped using a single PMD/PUD. Assume we have hugetlb folio that spans multiple PTEs (e.g., 64 KiB hugetlb folios on arm64 with 4 KiB base page size). GUP, as it walks the page tables, will perform a pte_offset_map_lock() to grab the PTE table lock. However, hugetlb that concurrently modifies these page tables would actually grab the mm->page_table_lock: with USE_SPLIT_PTE_PTLOCKS, the locks would differ. Something similar can happen right now with hugetlb folios that span multiple PMDs when USE_SPLIT_PMD_PTLOCKS. This issue can be reproduced [1], for example triggering: [ 3105.936100] ------------[ cut here ]------------ [ 3105.939323] WARNING: CPU: 31 PID: 2732 at mm/gup.c:142 try_grab_folio+0x11c/0x188 [ 3105.944634] Modules linked in: [...] [ 3105.974841] CPU: 31 PID: 2732 Comm: reproducer Not tainted 6.10.0-64.eln141.aarch64 #1 [ 3105.980406] Hardware name: QEMU KVM Virtual Machine, BIOS edk2-20240524-4.fc40 05/24/2024 [ 3105.986185] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 3105.991108] pc : try_grab_folio+0x11c/0x188 [ 3105.994013] lr : follow_page_pte+0xd8/0x430 [ 3105.996986] sp : ffff80008eafb8f0 [ 3105.999346] x29: ffff80008eafb900 x28: ffffffe8d481f380 x27: 00f80001207cff43 [ 3106.004414] x26: 0000000000000001 x25: 0000000000000000 x24: ffff80008eafba48 [ 3106.009520] x23: 0000ffff9372f000 x22: ffff7a54459e2000 x21: ffff7a546c1aa978 [ 3106.014529] x20: ffffffe8d481f3c0 x19: 0000000000610041 x18: 0000000000000001 [ 3106.019506] x17: 0000000000000001 x16: ffffffffffffffff x15: 0000000000000000 [ 3106.024494] x14: ffffb85477fdfe08 x13: 0000ffff9372ffff x12: 0000000000000000 [ 3106.029469] x11: 1fffef4a88a96be1 x10: ffff7a54454b5f0c x9 : ffffb854771b12f0 [ 3106.034324] x8 : 0008000000000000 x7 : ffff7a546c1aa980 x6 : 0008000000000080 [ 3106.038902] x5 : 00000000001207cf x4 : 0000ffff9372f000 x3 : ffffffe8d481f000 [ 3106.043420] x2 : 0000000000610041 x1 : 0000000000000001 x0 : 0000000000000000 [ 3106.047957] Call trace: [ 3106.049522] try_grab_folio+0x11c/0x188 [ 3106.051996] follow_pmd_mask.constprop.0.isra.0+0x150/0x2e0 [ 3106.055527] follow_page_mask+0x1a0/0x2b8 [ 3106.058118] __get_user_pages+0xf0/0x348 [ 3106.060647] faultin_page_range+0xb0/0x360 [ 3106.063651] do_madvise+0x340/0x598 Let's make huge_pte_lockptr() effectively use the same PT locks as any core-mm page table walker would. Add ptep_lockptr() to obtain the PTE page table lock using a pte pointer -- unfortunately we cannot convert pte_lockptr() because virt_to_page() doesn't work with kmap'ed page tables we can have with CONFIG_HIGHPTE. Handle CONFIG_PGTABLE_LEVELS correctly by checking in reverse order, such that when e.g., CONFIG_PGTABLE_LEVELS==2 with PGDIR_SIZE==P4D_SIZE==PUD_SIZE==PMD_SIZE will work as expected. Document why that works. There is one ugly case: powerpc 8xx, whereby we have an 8 MiB hugetlb folio being mapped using two PTE page tables. While hugetlb wants to take the PMD table lock, core-mm would grab the PTE table lock of one of both PTE page tables. In such corner cases, we have to make sure that both locks match, which is (fortunately!) currently guaranteed for 8xx as it does not support SMP and consequently doesn't use split PT locks. [1] https://lore.kernel.org/all/1bbfcc7f-f222-45a5-ac44-c5a1381c596d@redhat.com/ Link: https://lkml.kernel.org/r/20240801204748.99107-1-david@redhat.com Fixes: 9cb28da54643 ("mm/gup: handle hugetlb in the generic follow_page_mask code") Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Peter Xu <peterx@redhat.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Peter Xu <peterx@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Muchun Song <muchun.song@linux.dev> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-17mm/hugetlb: fix possible recursive locking detected warningMiaohe Lin1-0/+1
When tries to demote 1G hugetlb folios, a lockdep warning is observed: ============================================ WARNING: possible recursive locking detected 6.10.0-rc6-00452-ga4d0275fa660-dirty #79 Not tainted -------------------------------------------- bash/710 is trying to acquire lock: ffffffff8f0a7850 (&h->resize_lock){+.+.}-{3:3}, at: demote_store+0x244/0x460 but task is already holding lock: ffffffff8f0a6f48 (&h->resize_lock){+.+.}-{3:3}, at: demote_store+0xae/0x460 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&h->resize_lock); lock(&h->resize_lock); *** DEADLOCK *** May be due to missing lock nesting notation 4 locks held by bash/710: #0: ffff8f118439c3f0 (sb_writers#5){.+.+}-{0:0}, at: ksys_write+0x64/0xe0 #1: ffff8f11893b9e88 (&of->mutex#2){+.+.}-{3:3}, at: kernfs_fop_write_iter+0xf8/0x1d0 #2: ffff8f1183dc4428 (kn->active#98){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x100/0x1d0 #3: ffffffff8f0a6f48 (&h->resize_lock){+.+.}-{3:3}, at: demote_store+0xae/0x460 stack backtrace: CPU: 3 PID: 710 Comm: bash Not tainted 6.10.0-rc6-00452-ga4d0275fa660-dirty #79 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x68/0xa0 __lock_acquire+0x10f2/0x1ca0 lock_acquire+0xbe/0x2d0 __mutex_lock+0x6d/0x400 demote_store+0x244/0x460 kernfs_fop_write_iter+0x12c/0x1d0 vfs_write+0x380/0x540 ksys_write+0x64/0xe0 do_syscall_64+0xb9/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7fa61db14887 RSP: 002b:00007ffc56c48358 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000000002 RCX: 00007fa61db14887 RDX: 0000000000000002 RSI: 000055a030050220 RDI: 0000000000000001 RBP: 000055a030050220 R08: 00007fa61dbd1460 R09: 000000007fffffff R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000002 R13: 00007fa61dc1b780 R14: 00007fa61dc17600 R15: 00007fa61dc16a00 </TASK> Lockdep considers this an AA deadlock because the different resize_lock mutexes reside in the same lockdep class, but this is a false positive. Place them in distinct classes to avoid these warnings. Link: https://lkml.kernel.org/r/20240712031314.2570452-1-linmiaohe@huawei.com Fixes: 8531fc6f52f5 ("hugetlb: add hugetlb demote page support") Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Acked-by: Muchun Song <muchun.song@linux.dev> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-12mm: remove CONFIG_ARCH_HAS_HUGEPDChristophe Leroy1-6/+0
powerpc was the only user of CONFIG_ARCH_HAS_HUGEPD and doesn't use it anymore, so remove all related code. Link: https://lkml.kernel.org/r/4b10c54c794780b955f3ad6c657d0199dd792146.1719928057.git.christophe.leroy@csgroup.eu Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Acked-by: Oscar Salvador <osalvador@suse.de> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03mm/hugetlb_cgroup: switch to the new cftypesXiu Jianfeng1-5/+0
The previous patch has already reconstructed the cftype attributes based on the templates and saved them in dfl_cftypes and legacy_cftypes. then remove the old procedure and switch to the new cftypes. Link: https://lkml.kernel.org/r/20240612092409.2027592-4-xiujianfeng@huawei.com Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03mm/hugetlb: mm/memory_hotplug: use a folio in scan_movable_pages()Sidhartha Kumar1-5/+1
By using a folio in scan_movable_pages() we convert the last user of the page-based hugetlb information macro functions to the folio version. After this conversion, we can safely remove the page-based definitions from include/linux/hugetlb.h. Link: https://lkml.kernel.org/r/20240530171427.242018-1-sidhartha.kumar@oracle.com Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03mm/hugetlb: remove {Set,Clear}Hpage macrosSidhartha Kumar1-10/+2
All users have been converted to use the folio version of these macros, we can safely remove the page based interface. Link: https://lkml.kernel.org/r/20240520224407.110062-1-sidhartha.kumar@oracle.com Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Muchun Song <muchun.song@linux.dev> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-19Merge tag 'mm-stable-2024-05-17-19-19' of ↵Linus Torvalds1-43/+52
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull mm updates from Andrew Morton: "The usual shower of singleton fixes and minor series all over MM, documented (hopefully adequately) in the respective changelogs. Notable series include: - Lucas Stach has provided some page-mapping cleanup/consolidation/ maintainability work in the series "mm/treewide: Remove pXd_huge() API". - In the series "Allow migrate on protnone reference with MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's MPOL_PREFERRED_MANY mode, yielding almost doubled performance in one test. - In their series "Memory allocation profiling" Kent Overstreet and Suren Baghdasaryan have contributed a means of determining (via /proc/allocinfo) whereabouts in the kernel memory is being allocated: number of calls and amount of memory. - Matthew Wilcox has provided the series "Various significant MM patches" which does a number of rather unrelated things, but in largely similar code sites. - In his series "mm: page_alloc: freelist migratetype hygiene" Johannes Weiner has fixed the page allocator's handling of migratetype requests, with resulting improvements in compaction efficiency. - In the series "make the hugetlb migration strategy consistent" Baolin Wang has fixed a hugetlb migration issue, which should improve hugetlb allocation reliability. - Liu Shixin has hit an I/O meltdown caused by readahead in a memory-tight memcg. Addressed in the series "Fix I/O high when memory almost met memcg limit". - In the series "mm/filemap: optimize folio adding and splitting" Kairui Song has optimized pagecache insertion, yielding ~10% performance improvement in one test. - Baoquan He has cleaned up and consolidated the early zone initialization code in the series "mm/mm_init.c: refactor free_area_init_core()". - Baoquan has also redone some MM initializatio code in the series "mm/init: minor clean up and improvement". - MM helper cleanups from Christoph Hellwig in his series "remove follow_pfn". - More cleanups from Matthew Wilcox in the series "Various page->flags cleanups". - Vlastimil Babka has contributed maintainability improvements in the series "memcg_kmem hooks refactoring". - More folio conversions and cleanups in Matthew Wilcox's series: "Convert huge_zero_page to huge_zero_folio" "khugepaged folio conversions" "Remove page_idle and page_young wrappers" "Use folio APIs in procfs" "Clean up __folio_put()" "Some cleanups for memory-failure" "Remove page_mapping()" "More folio compat code removal" - David Hildenbrand chipped in with "fs/proc/task_mmu: convert hugetlb functions to work on folis". - Code consolidation and cleanup work related to GUP's handling of hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2". - Rick Edgecombe has developed some fixes to stack guard gaps in the series "Cover a guard gap corner case". - Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the series "mm/ksm: fix ksm exec support for prctl". - Baolin Wang has implemented NUMA balancing for multi-size THPs. This is a simple first-cut implementation for now. The series is "support multi-size THP numa balancing". - Cleanups to vma handling helper functions from Matthew Wilcox in the series "Unify vma_address and vma_pgoff_address". - Some selftests maintenance work from Dev Jain in the series "selftests/mm: mremap_test: Optimizations and style fixes". - Improvements to the swapping of multi-size THPs from Ryan Roberts in the series "Swap-out mTHP without splitting". - Kefeng Wang has significantly optimized the handling of arm64's permission page faults in the series "arch/mm/fault: accelerate pagefault when badaccess" "mm: remove arch's private VM_FAULT_BADMAP/BADACCESS" - GUP cleanups from David Hildenbrand in "mm/gup: consistently call it GUP-fast". - hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault path to use struct vm_fault". - selftests build fixes from John Hubbard in the series "Fix selftests/mm build without requiring "make headers"". - Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the series "Improved Memory Tier Creation for CPUless NUMA Nodes". Fixes the initialization code so that migration between different memory types works as intended. - David Hildenbrand has improved follow_pte() and fixed an errant driver in the series "mm: follow_pte() improvements and acrn follow_pte() fixes". - David also did some cleanup work on large folio mapcounts in his series "mm: mapcount for large folios + page_mapcount() cleanups". - Folio conversions in KSM in Alex Shi's series "transfer page to folio in KSM". - Barry Song has added some sysfs stats for monitoring multi-size THP's in the series "mm: add per-order mTHP alloc and swpout counters". - Some zswap cleanups from Yosry Ahmed in the series "zswap same-filled and limit checking cleanups". - Matthew Wilcox has been looking at buffer_head code and found the documentation to be lacking. The series is "Improve buffer head documentation". - Multi-size THPs get more work, this time from Lance Yang. His series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free" optimizes the freeing of these things. - Kemeng Shi has added more userspace-visible writeback instrumentation in the series "Improve visibility of writeback". - Kemeng Shi then sent some maintenance work on top in the series "Fix and cleanups to page-writeback". - Matthew Wilcox reduces mmap_lock traffic in the anon vma code in the series "Improve anon_vma scalability for anon VMAs". Intel's test bot reported an improbable 3x improvement in one test. - SeongJae Park adds some DAMON feature work in the series "mm/damon: add a DAMOS filter type for page granularity access recheck" "selftests/damon: add DAMOS quota goal test" - Also some maintenance work in the series "mm/damon/paddr: simplify page level access re-check for pageout" "mm/damon: misc fixes and improvements" - David Hildenbrand has disabled some known-to-fail selftests ni the series "selftests: mm: cow: flag vmsplice() hugetlb tests as XFAIL". - memcg metadata storage optimizations from Shakeel Butt in "memcg: reduce memory consumption by memcg stats". - DAX fixes and maintenance work from Vishal Verma in the series "dax/bus.c: Fixups for dax-bus locking"" * tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (426 commits) memcg, oom: cleanup unused memcg_oom_gfp_mask and memcg_oom_order selftests/mm: hugetlb_madv_vs_map: avoid test skipping by querying hugepage size at runtime mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_wp mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_fault selftests: cgroup: add tests to verify the zswap writeback path mm: memcg: make alloc_mem_cgroup_per_node_info() return bool mm/damon/core: fix return value from damos_wmark_metric_value mm: do not update memcg stats for NR_{FILE/SHMEM}_PMDMAPPED selftests: cgroup: remove redundant enabling of memory controller Docs/mm/damon/maintainer-profile: allow posting patches based on damon/next tree Docs/mm/damon/maintainer-profile: change the maintainer's timezone from PST to PT Docs/mm/damon/design: use a list for supported filters Docs/admin-guide/mm/damon/usage: fix wrong schemes effective quota update command Docs/admin-guide/mm/damon/usage: fix wrong example of DAMOS filter matching sysfs file selftests/damon: classify tests for functionalities and regressions selftests/damon/_damon_sysfs: use 'is' instead of '==' for 'None' selftests/damon/_damon_sysfs: find sysfs mount point from /proc/mounts selftests/damon/_damon_sysfs: check errors from nr_schemes file reads mm/damon/core: initialize ->esz_bp from damos_quota_init_priv() selftests/damon: add a test for DAMOS quota goal ...
2024-05-05mm: convert hugetlb_page_mapping_lock_write to folioMatthew Wilcox (Oracle)1-3/+3
The page is only used to get the mapping, so the folio will do just as well. Both callers already have a folio available, so this saves a call to compound_head(). Link: https://lkml.kernel.org/r/20240412193510.2356957-7-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Jane Chu  <jane.chu@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Acked-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-05mm/hugetlb: rename dissolve_free_huge_pages() to dissolve_free_hugetlb_folios()Sidhartha Kumar1-2/+2
dissolve_free_huge_pages() only uses folios internally, rename it to dissolve_free_hugetlb_folios() and change the comments which reference it. [akpm@linux-foundation.org: remove unneeded `extern'] Link: https://lkml.kernel.org/r/20240412182139.120871-2-sidhartha.kumar@oracle.com Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com> Reviewed-by: Vishal Moola (Oracle) <vishal.moola@gmail.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Jane Chu <jane.chu@oracle.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-05mm/hugetlb: convert dissolve_free_huge_pages() to foliosSidhartha Kumar1-2/+2
Allows us to rename dissolve_free_huge_pages() to dissolve_free_hugetlb_folio(). Convert one caller to pass in a folio directly and use page_folio() to convert the caller in mm/memory-failure. [sidhartha.kumar@oracle.com: remove unneeded `extern'] Link: https://lkml.kernel.org/r/71760ed4-e80d-493a-95ea-2545414b1aba@oracle.com [sidhartha.kumar@oracle.com: v2] Link: https://lkml.kernel.org/r/20240412182139.120871-1-sidhartha.kumar@oracle.com Link: https://lkml.kernel.org/r/20240411164756.261178-1-sidhartha.kumar@oracle.com Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Vishal Moola (Oracle) <vishal.moola@gmail.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Jane Chu <jane.chu@oracle.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25mm/gup: handle hugetlb in the generic follow_page_mask codePeter Xu1-7/+0
Now follow_page() is ready to handle hugetlb pages in whatever form, and over all architectures. Switch to the generic code path. Time to retire hugetlb_follow_page_mask(), following the previous retirement of follow_hugetlb_page() in 4849807114b8. There may be a slight difference of how the loops run when processing slow GUP over a large hugetlb range on cont_pte/cont_pmd supported archs: each loop of __get_user_pages() will resolve one pgtable entry with the patch applied, rather than relying on the size of hugetlb hstate, the latter may cover multiple entries in one loop. A quick performance test on an aarch64 VM on M1 chip shows 15% degrade over a tight loop of slow gup after the path switched. That shouldn't be a problem because slow-gup should not be a hot path for GUP in general: when page is commonly present, fast-gup will already succeed, while when the page is indeed missing and require a follow up page fault, the slow gup degrade will probably buried in the fault paths anyway. It also explains why slow gup for THP used to be very slow before 57edfcfd3419 ("mm/gup: accelerate thp gup even for "pages != NULL"") lands, the latter not part of a performance analysis but a side benefit. If the performance will be a concern, we can consider handle CONT_PTE in follow_page(). Before that is justified to be necessary, keep everything clean and simple. Link: https://lkml.kernel.org/r/20240327152332.950956-14-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Ryan Roberts <ryan.roberts@arm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrew Jones <andrew.jones@linux.dev> Cc: Aneesh Kumar K.V (IBM) <aneesh.kumar@kernel.org> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: James Houghton <jthoughton@google.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Mike Rapoport (IBM)" <rppt@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25mm/hugetlb: declare hugetlbfs_pagecache_present() non-staticPeter Xu1-0/+9
It will be used outside hugetlb.c soon. Link: https://lkml.kernel.org/r/20240327152332.950956-3-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Tested-by: Ryan Roberts <ryan.roberts@arm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrew Jones <andrew.jones@linux.dev> Cc: Aneesh Kumar K.V (IBM) <aneesh.kumar@kernel.org> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: James Houghton <jthoughton@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Mike Rapoport (IBM)" <rppt@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25mm: convert arch_clear_hugepage_flags to take a folioMatthew Wilcox (Oracle)1-3/+3
All implementations that aren't no-ops just set a bit in the flags, and we want to use the folio flags rather than the page flags for that. Rename it to arch_clear_hugetlb_flags() while we're touching it so nobody thinks it's used for THP. [willy@infradead.org: fix arm64 build] Link: https://lkml.kernel.org/r/ZgQvNKGdlDkwhQEX@casper.infradead.org Link: https://lkml.kernel.org/r/20240326171045.410737-8-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25mm: hugetlb: make the hugetlb migration strategy consistentBaolin Wang1-2/+33
As discussed in previous thread [1], there is an inconsistency when handing hugetlb migration. When handling the migration of freed hugetlb, it prevents fallback to other NUMA nodes in alloc_and_dissolve_hugetlb_folio(). However, when dealing with in-use hugetlb, it allows fallback to other NUMA nodes in alloc_hugetlb_folio_nodemask(), which can break the per-node hugetlb pool and might result in unexpected failures when node bound workloads doesn't get what is asssumed available. To make hugetlb migration strategy more clear, we should list all the scenarios of hugetlb migration and analyze whether allocation fallback is permitted: 1) Memory offline: will call dissolve_free_huge_pages() to free the freed hugetlb, and call do_migrate_range() to migrate the in-use hugetlb. Both can break the per-node hugetlb pool, but as this is an explicit offlining operation, no better choice. So should allow the hugetlb allocation fallback. 2) Memory failure: same as memory offline. Should allow fallback to a different node might be the only option to handle it, otherwise the impact of poisoned memory can be amplified. 3) Longterm pinning: will call migrate_longterm_unpinnable_pages() to migrate in-use and not-longterm-pinnable hugetlb, which can break the per-node pool. But we should fail to longterm pinning if can not allocate on current node to avoid breaking the per-node pool. 4) Syscalls (mbind, migrate_pages, move_pages): these are explicit users operation to move pages to other nodes, so fallback to other nodes should not be prohibited. 5) alloc_contig_range: used by CMA allocation and virtio-mem fake-offline to allocate given range of pages. Now the freed hugetlb migration is not allowed to fallback, to keep consistency, the in-use hugetlb migration should be also not allowed to fallback. 6) alloc_contig_pages: used by kfence, pgtable_debug etc. The strategy should be consistent with that of alloc_contig_range(). Based on the analysis of the various scenarios above, introducing a new helper to determine whether fallback is permitted according to the migration reason.. [1] https://lore.kernel.org/all/6f26ce22d2fcd523418a085f2c588fe0776d46e7.1706794035.git.baolin.wang@linux.alibaba.com/ Link: https://lkml.kernel.org/r/3519fcd41522817307a05b40fb551e2e17e68101.1709719720.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: David Hildenbrand <david@redhat.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25mm/treewide: remove pXd_huge()Peter Xu1-24/+0
This API is not used anymore, drop it for the whole tree. Link: https://lkml.kernel.org/r/20240318200404.448346-13-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andreas Larsson <andreas@gaisler.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Bjorn Andersson <andersson@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David S. Miller <davem@davemloft.net> Cc: Fabio Estevam <festevam@denx.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Konrad Dybcio <konrad.dybcio@linaro.org> Cc: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org> Cc: Lucas Stach <l.stach@pengutronix.de> Cc: Mark Salter <msalter@redhat.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Shawn Guo <shawnguo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-09fs: Add FOP_HUGE_PAGESMatthew Wilcox (Oracle)1-6/+2
Instead of checking for specific file_operations, add a bit to file_operations which denotes a file that only contain hugetlb pages. This lets us make hugetlbfs_file_operations static, and removes is_file_shm_hugepages() completely. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Link: https://lore.kernel.org/r/20240407201122.3783877-1-willy@infradead.org Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-03-06hugetlb: parallelize 1G hugetlb initializationGang Li1-1/+1
Optimizing the initialization speed of 1G huge pages through parallelization. 1G hugetlbs are allocated from bootmem, a process that is already very fast and does not currently require optimization. Therefore, we focus on parallelizing only the initialization phase in `gather_bootmem_prealloc`. Here are some test results: test case no patch(ms) patched(ms) saved ------------------- -------------- ------------- -------- 256c2T(4 node) 1G 4745 2024 57.34% 128c1T(2 node) 1G 3358 1712 49.02% 12T 1G 77000 18300 76.23% [akpm@linux-foundation.org: s/initialied/initialized/, per Alexey] Link: https://lkml.kernel.org/r/20240222140422.393911-9-gang.li@linux.dev Signed-off-by: Gang Li <ligang.bdlg@bytedance.com> Tested-by: David Rientjes <rientjes@google.com> Reviewed-by: Muchun Song <muchun.song@linux.dev> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jane Chu <jane.chu@oracle.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-01-08mm, treewide: rename MAX_ORDER to MAX_PAGE_ORDERKirill A. Shutemov1-1/+1
commit 23baf831a32c ("mm, treewide: redefine MAX_ORDER sanely") has changed the definition of MAX_ORDER to be inclusive. This has caused issues with code that was not yet upstream and depended on the previous definition. To draw attention to the altered meaning of the define, rename MAX_ORDER to MAX_PAGE_ORDER. Link: https://lkml.kernel.org/r/20231228144704.14033-2-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-06hugetlb: fix null-ptr-deref in hugetlb_vma_lock_writeMike Kravetz1-4/+1
The routine __vma_private_lock tests for the existence of a reserve map associated with a private hugetlb mapping. A pointer to the reserve map is in vma->vm_private_data. __vma_private_lock was checking the pointer for NULL. However, it is possible that the low bits of the pointer could be used as flags. In such instances, vm_private_data is not NULL and not a valid pointer. This results in the null-ptr-deref reported by syzbot: general protection fault, probably for non-canonical address 0xdffffc000000001d: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x00000000000000e8-0x00000000000000ef] CPU: 0 PID: 5048 Comm: syz-executor139 Not tainted 6.6.0-rc7-syzkaller-00142-g88 8cf78c29e2 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 1 0/09/2023 RIP: 0010:__lock_acquire+0x109/0x5de0 kernel/locking/lockdep.c:5004 ... Call Trace: <TASK> lock_acquire kernel/locking/lockdep.c:5753 [inline] lock_acquire+0x1ae/0x510 kernel/locking/lockdep.c:5718 down_write+0x93/0x200 kernel/locking/rwsem.c:1573 hugetlb_vma_lock_write mm/hugetlb.c:300 [inline] hugetlb_vma_lock_write+0xae/0x100 mm/hugetlb.c:291 __hugetlb_zap_begin+0x1e9/0x2b0 mm/hugetlb.c:5447 hugetlb_zap_begin include/linux/hugetlb.h:258 [inline] unmap_vmas+0x2f4/0x470 mm/memory.c:1733 exit_mmap+0x1ad/0xa60 mm/mmap.c:3230 __mmput+0x12a/0x4d0 kernel/fork.c:1349 mmput+0x62/0x70 kernel/fork.c:1371 exit_mm kernel/exit.c:567 [inline] do_exit+0x9ad/0x2a20 kernel/exit.c:861 __do_sys_exit kernel/exit.c:991 [inline] __se_sys_exit kernel/exit.c:989 [inline] __x64_sys_exit+0x42/0x50 kernel/exit.c:989 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x38/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd Mask off low bit flags before checking for NULL pointer. In addition, the reserve map only 'belongs' to the OWNER (parent in parent/child relationships) so also check for the OWNER flag. Link: https://lkml.kernel.org/r/20231114012033.259600-1-mike.kravetz@oracle.com Reported-by: syzbot+6ada951e7c0f7bc8a71e@syzkaller.appspotmail.com Closes: https://lore.kernel.org/linux-mm/00000000000078d1e00608d7878b@google.com/ Fixes: bf4916922c60 ("hugetlbfs: extend hugetlb_vma_lock to private VMAs") Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Rik van Riel <riel@surriel.com> Cc: Edward Adam Davis <eadavis@qq.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Nathan Chancellor <nathan@kernel.org> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Tom Rix <trix@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25mempolicy: mmap_lock is not needed while migrating foliosHugh Dickins1-9/+0
mbind(2) holds down_write of current task's mmap_lock throughout (exclusive because it needs to set the new mempolicy on the vmas); migrate_pages(2) holds down_read of pid's mmap_lock throughout. They both hold mmap_lock across the internal migrate_pages(), under which all new page allocations (huge or small) are made. I'm nervous about it; and migrate_pages() certainly does not need mmap_lock itself. It's done this way for mbind(2), because its page allocator is vma_alloc_folio() or alloc_hugetlb_folio_vma(), both of which depend on vma and address. Now that we have alloc_pages_mpol(), depending on (refcounted) memory policy and interleave index, mbind(2) can be modified to use that or alloc_hugetlb_folio_nodemask(), and then not need mmap_lock across the internal migrate_pages() at all: add alloc_migration_target_by_mpol() to replace mbind's new_page(). (After that change, alloc_hugetlb_folio_vma() is used by nothing but a userfaultfd function: move it out of hugetlb.h and into the #ifdef.) migrate_pages(2) has chosen its target node before migrating, so can continue to use the standard alloc_migration_target(); but let it take and drop mmap_lock just around migrate_to_node()'s queue_pages_range(): neither the node-to-node calculations nor the page migrations need it. It seems unlikely, but it is conceivable that some userspace depends on the kernel's mmap_lock exclusion here, instead of doing its own locking: more likely in a testsuite than in real life. It is also possible, of course, that some pages on the list will be munmapped by another thread before they are migrated, or a newer memory policy applied to the range by that time: but such races could happen before, as soon as mmap_lock was dropped, so it does not appear to be a concern. Link: https://lkml.kernel.org/r/21e564e8-269f-6a89-7ee2-fd612831c289@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Nhat Pham <nphamcs@gmail.com> Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun heo <tj@kernel.org> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25hugetlbfs: drop shared NUMA mempolicy pretenceHugh Dickins1-2/+1
Patch series "mempolicy: cleanups leading to NUMA mpol without vma", v2. Mostly cleanups in mm/mempolicy.c, but finally removing the pseudo-vma from shmem folio allocation, and removing the mmap_lock around folio migration for mbind and migrate_pages syscalls. This patch (of 12): hugetlbfs_fallocate() goes through the motions of pasting a shared NUMA mempolicy onto its pseudo-vma, but how could there ever be a shared NUMA mempolicy for this file? hugetlb_vm_ops has never offered a set_policy method, and hugetlbfs_parse_param() has never supported any mpol options for a mount-wide default policy. It's just an illusion: clean it away so as not to confuse others, giving us more freedom to adjust shmem's set_policy/get_policy implementation. But hugetlbfs_inode_info is still required, just to accommodate seals. Yes, shared NUMA mempolicy support could be added to hugetlbfs, with a set_policy method and/or mpol mount option (Andi's first posting did include an admitted-unsatisfactory hugetlb_set_policy()); but it seems that nobody has bothered to add that in the nineteen years since v2.6.7 made it possible, and there is at least one company that has invested enough into hugetlbfs, that I guess they have learnt well enough how to manage its NUMA, without needing shared mempolicy. Remove linux/mempolicy.h from linux/hugetlb.h: include linux/pagemap.h in its place, because hugetlb.h's recently added use of filemap_lock_folio() requires that (although most .configs and .c's get it in some other way). Link: https://lkml.kernel.org/r/ebc0987e-beff-8bfb-9283-234c2cbd17c5@google.com Link: https://lkml.kernel.org/r/cae82d4b-904a-faaf-282a-34fcc188c81f@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun heo <tj@kernel.org> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Nhat Pham <nphamcs@gmail.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18fs/proc/task_mmu: implement IOCTL to get and optionally clear info about PTEsMuhammad Usama Anjum1-0/+1
The PAGEMAP_SCAN IOCTL on the pagemap file can be used to get or optionally clear the info about page table entries. The following operations are supported in this IOCTL: - Scan the address range and get the memory ranges matching the provided criteria. This is performed when the output buffer is specified. - Write-protect the pages. The PM_SCAN_WP_MATCHING is used to write-protect the pages of interest. The PM_SCAN_CHECK_WPASYNC aborts the operation if non-Async Write Protected pages are found. The ``PM_SCAN_WP_MATCHING`` can be used with or without PM_SCAN_CHECK_WPASYNC. - Both of those operations can be combined into one atomic operation where we can get and write protect the pages as well. Following flags about pages are currently supported: - PAGE_IS_WPALLOWED - Page has async-write-protection enabled - PAGE_IS_WRITTEN - Page has been written to from the time it was write protected - PAGE_IS_FILE - Page is file backed - PAGE_IS_PRESENT - Page is present in the memory - PAGE_IS_SWAPPED - Page is in swapped - PAGE_IS_PFNZERO - Page has zero PFN - PAGE_IS_HUGE - Page is THP or Hugetlb backed This IOCTL can be extended to get information about more PTE bits. The entire address range passed by user [start, end) is scanned until either the user provided buffer is full or max_pages have been found. [akpm@linux-foundation.org: update it for "mm: hugetlb: add huge page size param to set_huge_pte_at()"] [akpm@linux-foundation.org: fix CONFIG_HUGETLB_PAGE=n warning] [arnd@arndb.de: hide unused pagemap_scan_backout_range() function] Link: https://lkml.kernel.org/r/20230927060257.2975412-1-arnd@kernel.org [sfr@canb.auug.org.au: fix "fs/proc/task_mmu: hide unused pagemap_scan_backout_range() function"] Link: https://lkml.kernel.org/r/20230928092223.0625c6bf@canb.auug.org.au Link: https://lkml.kernel.org/r/20230821141518.870589-3-usama.anjum@collabora.com Signed-off-by: Muhammad Usama Anjum <usama.anjum@collabora.com> Signed-off-by: Michał Mirosław <mirq-linux@rere.qmqm.pl> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Reviewed-by: Andrei Vagin <avagin@gmail.com> Reviewed-by: Michał Mirosław <mirq-linux@rere.qmqm.pl> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Gustavo A. R. Silva <gustavoars@kernel.org> Cc: "Liam R. Howlett" <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Miroslaw <emmir@google.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Nadav Amit <namit@vmware.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Paul Gofman <pgofman@codeweavers.com> Cc: Peter Xu <peterx@redhat.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Yun Zhou <yun.zhou@windriver.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18Merge mm-hotfixes-stable into mm-stable to pick up depended-upon changes.Andrew Morton1-2/+39
2023-10-18hugetlbfs: close race between MADV_DONTNEED and page faultRik van Riel1-2/+33
Malloc libraries, like jemalloc and tcalloc, take decisions on when to call madvise independently from the code in the main application. This sometimes results in the application page faulting on an address, right after the malloc library has shot down the backing memory with MADV_DONTNEED. Usually this is harmless, because we always have some 4kB pages sitting around to satisfy a page fault. However, with hugetlbfs systems often allocate only the exact number of huge pages that the application wants. Due to TLB batching, hugetlbfs MADV_DONTNEED will free pages outside of any lock taken on the page fault path, which can open up the following race condition: CPU 1 CPU 2 MADV_DONTNEED unmap page shoot down TLB entry page fault fail to allocate a huge page killed with SIGBUS free page Fix that race by pulling the locking from __unmap_hugepage_final_range into helper functions called from zap_page_range_single. This ensures page faults stay locked out of the MADV_DONTNEED VMA until the huge pages have actually been freed. Link: https://lkml.kernel.org/r/20231006040020.3677377-4-riel@surriel.com Fixes: 04ada095dcfc ("hugetlb: don't delete vma_lock in hugetlb MADV_DONTNEED processing") Signed-off-by: Rik van Riel <riel@surriel.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18