Age | Commit message (Collapse) | Author | Files | Lines |
|
If the persistent boot mapped ring buffer is used for trace_printk(),
force it to not use the binary versions. trace_printk() by default uses
bin_printf() that only saves the pointer to the format and not the format
itself inside the ring buffer. But for a persistent buffer that is read
after reboot, the pointers to the format strings may not be the same, or
worse, not even exist! Instead, just force the more robust, but slower,
version that does the formatting before saving into the ring buffer.
The boot mapped buffer can now be used for trace_printk and friends!
Using the trace_printk() and the persistent buffer was used to debug the
issue with the osnoise tracer:
Link: https://lore.kernel.org/all/20240822103443.6a6ae051@gandalf.local.home/
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Alexander Aring <aahringo@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lgoncalv@redhat.com>
Cc: Tomas Glozar <tglozar@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "Jonathan Corbet" <corbet@lwn.net>
Link: https://lore.kernel.org/20240823014019.386925800@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
The addresses of a stack trace event are relative to the kallsyms. As that
can change between boots, when printing the stack trace from a buffer that
was from the last boot, it needs all the addresses to be added to the
"text_delta" that gives the delta between the addresses of the functions
for the current boot compared to the address of the last boot. Then it can
be passed to kallsyms to find the function name, otherwise it just shows a
useless list of addresses.
Link: https://lkml.kernel.org/r/20240612232027.145807384@goodmis.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Youssef Esmat <youssefesmat@google.com>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
For a persistent ring buffer that is saved across boots, if function
tracing was performed in the previous boot, it only saves the address of
the functions and uses "%pS" to print their names. But the current boot,
those functions may be in different locations. The persistent meta-data
saves the text delta between the two boots and can be used to find the
address of the saved function of where it is located in the current boot.
Link: https://lkml.kernel.org/r/20240612232026.988226055@goodmis.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Youssef Esmat <youssefesmat@google.com>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
This reverts 60be76eeabb3d ("tracing: Add size check when printing
trace_marker output"). The only reason the precision check was added
was because of a bug that miscalculated the write size of the string into
the ring buffer and it truncated it removing the terminating nul byte. On
reading the trace it crashed the kernel. But this was due to the bug in
the code that happened during development and should never happen in
practice. If anything, the precision can hide bugs where the string in the
ring buffer isn't nul terminated and it will not be checked.
Link: https://lore.kernel.org/all/C7E7AF1A-D30F-4D18-B8E5-AF1EF58004F5@linux.ibm.com/
Link: https://lore.kernel.org/linux-trace-kernel/20240227125706.04279ac2@gandalf.local.home
Link: https://lore.kernel.org/all/20240302111244.3a1674be@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20240304174341.2a561d9f@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Fixes: 60be76eeabb3d ("tracing: Add size check when printing trace_marker output")
Reported-by: Sachin Sant <sachinp@linux.ibm.com>
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
If for some reason the trace_marker write does not have a nul byte for the
string, it will overflow the print:
trace_seq_printf(s, ": %s", field->buf);
The field->buf could be missing the nul byte. To prevent overflow, add the
max size that the buf can be by using the event size and the field
location.
int max = iter->ent_size - offsetof(struct print_entry, buf);
trace_seq_printf(s, ": %*.s", max, field->buf);
Link: https://lore.kernel.org/linux-trace-kernel/20231212084444.4619b8ce@gandalf.local.home
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Overlayfs uses backing files with "fake" overlayfs f_path and "real"
underlying f_inode, in order to use underlying inode aops for mapped
files and to display the overlayfs path in /proc/<pid>/maps.
In preparation for storing the overlayfs "fake" path instead of the
underlying "real" path in struct backing_file, define a noop helper
file_user_path() that returns f_path for now.
Use the new helper in procfs and kernel logs whenever a path of a
mapped file is displayed to users.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Link: https://lore.kernel.org/r/20231009153712.1566422-3-amir73il@gmail.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing updates from Steven Rostedt:
- Add new feature to have function graph tracer record the return
value. Adds a new option: funcgraph-retval ; when set, will show the
return value of a function in the function graph tracer.
- Also add the option: funcgraph-retval-hex where if it is not set, and
the return value is an error code, then it will return the decimal of
the error code, otherwise it still reports the hex value.
- Add the file /sys/kernel/tracing/osnoise/per_cpu/cpu<cpu>/timerlat_fd
That when a application opens it, it becomes the task that the timer
lat tracer traces. The application can also read this file to find
out how it's being interrupted.
- Add the file /sys/kernel/tracing/available_filter_functions_addrs
that works just the same as available_filter_functions but also shows
the addresses of the functions like kallsyms, except that it gives
the address of where the fentry/mcount jump/nop is. This is used by
BPF to make it easier to attach BPF programs to ftrace hooks.
- Replace strlcpy with strscpy in the tracing boot code.
* tag 'trace-v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing: Fix warnings when building htmldocs for function graph retval
riscv: ftrace: Enable HAVE_FUNCTION_GRAPH_RETVAL
tracing/boot: Replace strlcpy with strscpy
tracing/timerlat: Add user-space interface
tracing/osnoise: Skip running osnoise if all instances are off
tracing/osnoise: Switch from PF_NO_SETAFFINITY to migrate_disable
ftrace: Show all functions with addresses in available_filter_functions_addrs
selftests/ftrace: Add funcgraph-retval test case
LoongArch: ftrace: Enable HAVE_FUNCTION_GRAPH_RETVAL
x86/ftrace: Enable HAVE_FUNCTION_GRAPH_RETVAL
arm64: ftrace: Enable HAVE_FUNCTION_GRAPH_RETVAL
tracing: Add documentation for funcgraph-retval and funcgraph-retval-hex
function_graph: Support recording and printing the return value of function
fgraph: Add declaration of "struct fgraph_ret_regs"
|
|
Going a step further, we propose a way to use any user-space
workload as the task waiting for the timerlat timer. This is done
via a per-CPU file named osnoise/cpu$id/timerlat_fd file.
The tracef_fd allows a task to open at a time. When a task reads
the file, the timerlat timer is armed for future osnoise/timerlat_period_us
time. When the timer fires, it prints the IRQ latency and
wakes up the user-space thread waiting in the timerlat_fd.
The thread then starts to run, executes the timerlat measurement, prints
the thread scheduling latency and returns to user-space.
When the thread rereads the timerlat_fd, the tracer will print the
user-ret(urn) latency, which is an additional metric.
This additional metric is also traced by the tracer and can be used, for
example of measuring the context switch overhead from kernel-to-user and
user-to-kernel, or the response time for an arbitrary execution in
user-space.
The tracer supports one thread per CPU, the thread must be pinned to
the CPU, and it cannot migrate while holding the timerlat_fd. The reason
is that the tracer is per CPU (nothing prohibits the tracer from
allowing migrations in the future). The tracer monitors the migration
of the thread and disables the tracer if detected.
The timerlat_fd is only available for opening/reading when timerlat
tracer is enabled, and NO_OSNOISE_WORKLOAD is set.
The simplest way to activate this feature from user-space is:
-------------------------------- %< -----------------------------------
int main(void)
{
char buffer[1024];
int timerlat_fd;
int retval;
long cpu = 0; /* place in CPU 0 */
cpu_set_t set;
CPU_ZERO(&set);
CPU_SET(cpu, &set);
if (sched_setaffinity(gettid(), sizeof(set), &set) == -1)
return 1;
snprintf(buffer, sizeof(buffer),
"/sys/kernel/tracing/osnoise/per_cpu/cpu%ld/timerlat_fd",
cpu);
timerlat_fd = open(buffer, O_RDONLY);
if (timerlat_fd < 0) {
printf("error opening %s: %s\n", buffer, strerror(errno));
exit(1);
}
for (;;) {
retval = read(timerlat_fd, buffer, 1024);
if (retval < 0)
break;
}
close(timerlat_fd);
exit(0);
}
-------------------------------- >% -----------------------------------
When disabling timerlat, if there is a workload holding the timerlat_fd,
the SIGKILL will be sent to the thread.
Link: https://lkml.kernel.org/r/69fe66a863d2792ff4c3a149bf9e32e26468bb3a.1686063934.git.bristot@kernel.org
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: William White <chwhite@redhat.com>
Cc: Daniel Bristot de Oliveira <bristot@kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Now the print_fields() print trace event fields in reverse order. Modify
it to the positive sequence.
Example outputs for a user event:
test0 u32 count1; u32 count2
Output before:
example-2547 [000] ..... 325.666387: test0: count2=0x2 (2) count1=0x1 (1)
Output after:
example-2742 [002] ..... 429.769370: test0: count1=0x1 (1) count2=0x2 (2)
Link: https://lore.kernel.org/linux-trace-kernel/20230525085232.5096-1-sunliming@kylinos.cn
Fixes: 80a76994b2d88 ("tracing: Add "fields" option to show raw trace event fields")
Signed-off-by: sunliming <sunliming@kylinos.cn>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
If the buffer length is larger than 16 and concatenate is set to false,
there would be missing spaces every 16 bytes.
Example:
Before: c5 11 10 50 05 4d 31 40 00 40 00 40 00 4d 31 4000 40 00
After: c5 11 10 50 05 4d 31 40 00 40 00 40 00 4d 31 40 00 40 00
Link: https://lore.kernel.org/linux-trace-kernel/20230426032257.3157247-1-lyenting@google.com
Signed-off-by: Ken Lin <lyenting@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Both print_fields() and print_array() do not handle if dynamic data ends
at the last byte of the payload for both __dyn_loc and __rel_loc field
types. For __rel_loc, the offset was off by 4 bytes, leading to
incorrect strings and data being printed out. In print_array() the
buffer pos was missed from being advanced, which results in the first
payload byte being used as the offset base instead of the field offset.
Advance __rel_loc offset by 4 to ensure correct offset and advance pos
to the field offset to ensure correct data is displayed when printing
arrays. Change >= to > when checking if data is in-bounds, since it's
valid for dynamic data to include the last byte of the payload.
Example outputs for event format:
field:unsigned short common_type; offset:0; size:2; signed:0;
field:unsigned char common_flags; offset:2; size:1; signed:0;
field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
field:int common_pid; offset:4; size:4; signed:1;
field:__rel_loc char text[]; offset:8; size:4; signed:1;
Output before:
tp_rel_loc: text=<OVERFLOW>
Output after:
tp_rel_loc: text=Test
Link: https://lkml.kernel.org/r/20230419214140.4158-3-beaub@linux.microsoft.com
Fixes: 80a76994b2d8 ("tracing: Add "fields" option to show raw trace event fields")
Reported-by: Doug Cook <dcook@linux.microsoft.com>
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
The hex, raw and bin formats come from the old PREEMPT_RT patch set
latency tracer. That actually gave real alternatives to reading the ascii
buffer. But they have started to bit rot and they do not give a good
representation of the tracing data.
Add "fields" option that will read the trace event fields and parse the
data from how the fields are defined:
With "fields" = 0 (default)
echo 1 > events/sched/sched_switch/enable
cat trace
<idle>-0 [003] d..2. 540.078653: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/3:1 next_pid=83 next_prio=120
kworker/3:1-83 [003] d..2. 540.078860: sched_switch: prev_comm=kworker/3:1 prev_pid=83 prev_prio=120 prev_state=I ==> next_comm=swapper/3 next_pid=0 next_prio=120
<idle>-0 [003] d..2. 540.206423: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=sshd next_pid=807 next_prio=120
sshd-807 [003] d..2. 540.206531: sched_switch: prev_comm=sshd prev_pid=807 prev_prio=120 prev_state=S ==> next_comm=swapper/3 next_pid=0 next_prio=120
<idle>-0 [001] d..2. 540.206597: sched_switch: prev_comm=swapper/1 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/u16:4 next_pid=58 next_prio=120
kworker/u16:4-58 [001] d..2. 540.206617: sched_switch: prev_comm=kworker/u16:4 prev_pid=58 prev_prio=120 prev_state=I ==> next_comm=bash next_pid=830 next_prio=120
bash-830 [001] d..2. 540.206678: sched_switch: prev_comm=bash prev_pid=830 prev_prio=120 prev_state=R ==> next_comm=kworker/u16:4 next_pid=58 next_prio=120
kworker/u16:4-58 [001] d..2. 540.206696: sched_switch: prev_comm=kworker/u16:4 prev_pid=58 prev_prio=120 prev_state=I ==> next_comm=bash next_pid=830 next_prio=120
bash-830 [001] d..2. 540.206713: sched_switch: prev_comm=bash prev_pid=830 prev_prio=120 prev_state=R ==> next_comm=kworker/u16:4 next_pid=58 next_prio=120
echo 1 > options/fields
<...>-998 [002] d..2. 538.643732: sched_switch: next_prio=0x78 (120) next_pid=0x0 (0) next_comm=swapper/2 prev_state=0x20 (32) prev_prio=0x78 (120) prev_pid=0x3e6 (998) prev_comm=trace-cmd
<idle>-0 [001] d..2. 538.643806: sched_switch: next_prio=0x78 (120) next_pid=0x33e (830) next_comm=bash prev_state=0x0 (0) prev_prio=0x78 (120) prev_pid=0x0 (0) prev_comm=swapper/1
bash-830 [001] d..2. 538.644106: sched_switch: next_prio=0x78 (120) next_pid=0x3a (58) next_comm=kworker/u16:4 prev_state=0x0 (0) prev_prio=0x78 (120) prev_pid=0x33e (830) prev_comm=bash
kworker/u16:4-58 [001] d..2. 538.644130: sched_switch: next_prio=0x78 (120) next_pid=0x33e (830) next_comm=bash prev_state=0x80 (128) prev_prio=0x78 (120) prev_pid=0x3a (58) prev_comm=kworker/u16:4
bash-830 [001] d..2. 538.644180: sched_switch: next_prio=0x78 (120) next_pid=0x3a (58) next_comm=kworker/u16:4 prev_state=0x0 (0) prev_prio=0x78 (120) prev_pid=0x33e (830) prev_comm=bash
kworker/u16:4-58 [001] d..2. 538.644185: sched_switch: next_prio=0x78 (120) next_pid=0x33e (830) next_comm=bash prev_state=0x80 (128) prev_prio=0x78 (120) prev_pid=0x3a (58) prev_comm=kworker/u16:4
bash-830 [001] d..2. 538.644204: sched_switch: next_prio=0x78 (120) next_pid=0x0 (0) next_comm=swapper/1 prev_state=0x1 (1) prev_prio=0x78 (120) prev_pid=0x33e (830) prev_comm=bash
<idle>-0 [003] d..2. 538.644211: sched_switch: next_prio=0x78 (120) next_pid=0x327 (807) next_comm=sshd prev_state=0x0 (0) prev_prio=0x78 (120) prev_pid=0x0 (0) prev_comm=swapper/3
sshd-807 [003] d..2. 538.644340: sched_switch: next_prio=0x78 (120) next_pid=0x0 (0) next_comm=swapper/3 prev_state=0x1 (1) prev_prio=0x78 (120) prev_pid=0x327 (807) prev_comm=sshd
It traces the data safely without using the trace print formatting.
Link: https://lore.kernel.org/linux-trace-kernel/20230328145156.497651be@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Currently trace_printk() can be used as soon as early_trace_init() is
called from start_kernel(). But if a crash happens, and
"ftrace_dump_on_oops" is set on the kernel command line, all you get will
be:
[ 0.456075] <idle>-0 0dN.2. 347519us : Unknown type 6
[ 0.456075] <idle>-0 0dN.2. 353141us : Unknown type 6
[ 0.456075] <idle>-0 0dN.2. 358684us : Unknown type 6
This is because the trace_printk() event (type 6) hasn't been registered
yet. That gets done via an early_initcall(), which may be early, but not
early enough.
Instead of registering the trace_printk() event (and other ftrace events,
which are not trace events) via an early_initcall(), have them registered at
the same time that trace_printk() can be used. This way, if there is a
crash before early_initcall(), then the trace_printk()s will actually be
useful.
Link: https://lkml.kernel.org/r/20230104161412.019f6c55@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Fixes: e725c731e3bb1 ("tracing: Split tracing initialization into two for early initialization")
Reported-by: "Joel Fernandes (Google)" <joel@joelfernandes.org>
Tested-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Fix some checker warnings in the trace code by adding __printf attributes
to a number of trace functions and their declarations.
Changes:
========
ver #2)
- Dropped the fix for the unconditional tracing_max_lat_fops decl[1].
Link: https://lore.kernel.org/r/20221205180617.9b9d3971cbe06ee536603523@kernel.org/ [1]
Link: https://lore.kernel.org/r/166992525941.1716618.13740663757583361463.stgit@warthog.procyon.org.uk/ # v1
Link: https://lkml.kernel.org/r/167023571258.382307.15314866482834835192.stgit@warthog.procyon.org.uk
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
After commit 060fa5c83e67 ("tracing/events: reuse trace event ids after
overflow"), trace events with dynamic type are linked up in list
'ftrace_event_list' through field 'trace_event.list'. Then when max
event type number used up, it's possible to reuse type number of some
freed one by traversing 'ftrace_event_list'.
As instead, using IDA to manage available type numbers can make codes
simpler and then the field 'trace_event.list' can be dropped.
Since 'struct trace_event' is used in static tracepoints, drop
'trace_event.list' can make vmlinux smaller. Local test with about 2000
tracepoints, vmlinux reduced about 64KB:
before:-rwxrwxr-x 1 root root 76669448 Nov 8 17:14 vmlinux
after: -rwxrwxr-x 1 root root 76604176 Nov 8 17:15 vmlinux
Link: https://lkml.kernel.org/r/20221110020319.1259291-1-zhengyejian1@huawei.com
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
In preparation to limit the scope of the list iterator variable to the
traversal loop, use a dedicated pointer to point to the found element
[1].
Before, the code implicitly used the head when no element was found
when using &pos->list. Since the new variable is only set if an
element was found, the head needs to be used explicitly if the
variable is NULL.
Link: https://lkml.kernel.org/r/20220427170734.819891-2-jakobkoschel@gmail.com
Cc: Ingo Molnar <mingo@redhat.com>
Link: https://lore.kernel.org/all/CAHk-=wgRr_D8CB-D9Kg-c=EHreAsk5SqXPwr9Y7k9sA6cWXJ6w@mail.gmail.com/ [1]
Signed-off-by: Jakob Koschel <jakobkoschel@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Use `WARN(cond, ...)` instead of `if (cond)` + `printk(...)` +
`WARN_ON(1)`.
Link: https://lkml.kernel.org/r/20220424131932.3606-1-guozhengkui@vivo.com
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Guo Zhengkui <guozhengkui@vivo.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Disabling only bottom halves via local_bh_disable() disables also
preemption but this remains invisible to tracing. On a CONFIG_PREEMPT
kernel one might wonder why there is no scheduling happening despite the
N flag in the trace. The reason might be the a rcu_read_lock_bh()
section.
Add a 'b' to the tracing output if in task context with disabled bottom
halves.
Link: https://lkml.kernel.org/r/YbcbtdtC/bjCKo57@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
|
|
ftrace shows "[unknown/kretprobe'd]" indicator all addresses in the
kretprobe_trampoline, but the modified address by kretprobe should
be only kretprobe_trampoline+0.
Link: https://lkml.kernel.org/r/163163056044.489837.794883849706638013.stgit@devnote2
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Tested-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
Since now there is kretprobe_trampoline_addr() for referring the
address of kretprobe trampoline code, we don't need to access
kretprobe_trampoline directly.
Make it harder to refer by renaming it to __kretprobe_trampoline().
Link: https://lkml.kernel.org/r/163163045446.489837.14510577516938803097.stgit@devnote2
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
migrate_disable() forbids task migration to another CPU. It is available
since v5.11 and has already users such as highmem or BPF. It is useful
to observe this task state in tracing which already has other states
like the preemption counter.
Instead of adding the migrate disable counter as a new entry to struct
trace_entry, which would extend the whole struct by four bytes, it is
squashed into the preempt-disable counter. The lower four bits represent
the preemption counter, the upper four bits represent the migrate
disable counter. Both counter shouldn't exceed 15 but if they do, there
is a safety net which caps the value at 15.
Add the migrate-disable counter to the trace entry so it shows up in the
trace. Due to the users mentioned above, it is already possible to
observe it:
| bash-1108 [000] ...21 73.950578: rss_stat: mm_id=2213312838 curr=0 type=MM_ANONPAGES size=8192B
| bash-1108 [000] d..31 73.951222: irq_disable: caller=flush_tlb_mm_range+0x115/0x130 parent=ptep_clear_flush+0x42/0x50
| bash-1108 [000] d..31 73.951222: tlb_flush: pages:1 reason:local mm shootdown (3)
The last value is the migrate-disable counter.
Things that popped up:
- trace_print_lat_context() does not print the migrate counter. Not sure
if it should. It is used in "verbose" mode and uses 8 digits and I'm
not sure ther is something processing the value.
- trace_define_common_fields() now defines a different variable. This
probably breaks things. No ide what to do in order to preserve the old
behaviour. Since this is used as a filter it should be split somehow
to be able to match both nibbles here.
Link: https://lkml.kernel.org/r/20210810132625.ylssabmsrkygokuv@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[bigeasy: patch description.]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
[ SDR: Removed change to common_preempt_count field name ]
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
The timerlat tracer aims to help the preemptive kernel developers to
found souces of wakeup latencies of real-time threads. Like cyclictest,
the tracer sets a periodic timer that wakes up a thread. The thread then
computes a *wakeup latency* value as the difference between the *current
time* and the *absolute time* that the timer was set to expire. The main
goal of timerlat is tracing in such a way to help kernel developers.
Usage
Write the ASCII text "timerlat" into the current_tracer file of the
tracing system (generally mounted at /sys/kernel/tracing).
For example:
[root@f32 ~]# cd /sys/kernel/tracing/
[root@f32 tracing]# echo timerlat > current_tracer
It is possible to follow the trace by reading the trace trace file:
[root@f32 tracing]# cat trace
# tracer: timerlat
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# || /
# |||| ACTIVATION
# TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY
# | | | |||| | | | |
<idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns
<...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns
<idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns
<...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns
<idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns
<...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns
<idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns
<...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns
The tracer creates a per-cpu kernel thread with real-time priority that
prints two lines at every activation. The first is the *timer latency*
observed at the *hardirq* context before the activation of the thread.
The second is the *timer latency* observed by the thread, which is the
same level that cyclictest reports. The ACTIVATION ID field
serves to relate the *irq* execution to its respective *thread* execution.
The irq/thread splitting is important to clarify at which context
the unexpected high value is coming from. The *irq* context can be
delayed by hardware related actions, such as SMIs, NMIs, IRQs
or by a thread masking interrupts. Once the timer happens, the delay
can also be influenced by blocking caused by threads. For example, by
postponing the scheduler execution via preempt_disable(), by the
scheduler execution, or by masking interrupts. Threads can
also be delayed by the interference from other threads and IRQs.
The timerlat can also take advantage of the osnoise: traceevents.
For example:
[root@f32 ~]# cd /sys/kernel/tracing/
[root@f32 tracing]# echo timerlat > current_tracer
[root@f32 tracing]# echo osnoise > set_event
[root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us
[root@f32 tracing]# tail -10 trace
cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns
cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns
cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns
cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns
cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns
cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns
cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns
cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns
cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns
timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns
For further information see: Documentation/trace/timerlat-tracer.rst
Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com
Cc: Phil Auld <pauld@redhat.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Kate Carcia <kcarcia@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexandre Chartre <alexandre.chartre@oracle.com>
Cc: Clark Willaims <williams@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
In the context of high-performance computing (HPC), the Operating System
Noise (*osnoise*) refers to the interference experienced by an application
due to activities inside the operating system. In the context of Linux,
NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the
system. Moreover, hardware-related jobs can also cause noise, for example,
via SMIs.
The osnoise tracer leverages the hwlat_detector by running a similar
loop with preemption, SoftIRQs and IRQs enabled, thus allowing all
the sources of *osnoise* during its execution. Using the same approach
of hwlat, osnoise takes note of the entry and exit point of any
source of interferences, increasing a per-cpu interference counter. The
osnoise tracer also saves an interference counter for each source of
interference. The interference counter for NMI, IRQs, SoftIRQs, and
threads is increased anytime the tool observes these interferences' entry
events. When a noise happens without any interference from the operating
system level, the hardware noise counter increases, pointing to a
hardware-related noise. In this way, osnoise can account for any
source of interference. At the end of the period, the osnoise tracer
prints the sum of all noise, the max single noise, the percentage of CPU
available for the thread, and the counters for the noise sources.
Usage
Write the ASCII text "osnoise" into the current_tracer file of the
tracing system (generally mounted at /sys/kernel/tracing).
For example::
[root@f32 ~]# cd /sys/kernel/tracing/
[root@f32 tracing]# echo osnoise > current_tracer
It is possible to follow the trace by reading the trace trace file::
[root@f32 tracing]# cat trace
# tracer: osnoise
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth MAX
# || / SINGLE Interference counters:
# |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+
# TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD
# | | | |||| | | | | | | | | | |
<...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1
<...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3
<...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21
<...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0
<...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41
<...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2
<...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1
<...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19
In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the
tracer prints a message at the end of each period for each CPU that is
running an osnoise/CPU thread. The osnoise specific fields report:
- The RUNTIME IN USE reports the amount of time in microseconds that
the osnoise thread kept looping reading the time.
- The NOISE IN US reports the sum of noise in microseconds observed
by the osnoise tracer during the associated runtime.
- The % OF CPU AVAILABLE reports the percentage of CPU available for
the osnoise thread during the runtime window.
- The MAX SINGLE NOISE IN US reports the maximum single noise observed
during the runtime window.
- The Interference counters display how many each of the respective
interference happened during the runtime window.
Note that the example above shows a high number of HW noise samples.
The reason being is that this sample was taken on a virtual machine,
and the host interference is detected as a hardware interference.
Tracer options
The tracer has a set of options inside the osnoise directory, they are:
- osnoise/cpus: CPUs at which a osnoise thread will execute.
- osnoise/period_us: the period of the osnoise thread.
- osnoise/runtime_us: how long an osnoise thread will look for noise.
- osnoise/stop_tracing_us: stop the system tracing if a single noise
higher than the configured value happens. Writing 0 disables this
option.
- osnoise/stop_tracing_total_us: stop the system tracing if total noise
higher than the configured value happens. Writing 0 disables this
option.
- tracing_threshold: the minimum delta between two time() reads to be
considered as noise, in us. When set to 0, the default value will
be used, which is currently 5 us.
Additional Tracing
In addition to the tracer, a set of tracepoints were added to
facilitate the identification of the osnoise source.
- osnoise:sample_threshold: printed anytime a noise is higher than
the configurable tolerance_ns.
- osnoise:nmi_noise: noise from NMI, including the duration.
- osnoise:irq_noise: noise from an IRQ, including the duration.
- osnoise:softirq_noise: noise from a SoftIRQ, including the
duration.
- osnoise:thread_noise: noise from a thread, including the duration.
Note that all the values are *net values*. For example, if while osnoise
is running, another thread preempts the osnoise thread, it will start a
thread_noise duration at the start. Then, an IRQ takes place, preempting
the thread_noise, starting a irq_noise. When the IRQ ends its execution,
it will compute its duration, and this duration will be subtracted from
the thread_noise, in such a way as to avoid the double accounting of the
IRQ execution. This logic is valid for all sources of noise.
Here is one example of the usage of these tracepoints::
osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns
osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns
migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns
osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2
In this example, a noise sample of 8 microseconds was reported in the last
line, pointing to two interferences. Looking backward in the trace, the
two previous entries were about the migration thread running after a
timer IRQ execution. The first event is not part of the noise because
it took place one millisecond before.
It is worth noticing that the sum of the duration reported in the
tracepoints is smaller than eight us reported in the sample_threshold.
The reason roots in the overhead of the entry and exit code that happens
before and after any interference execution. This justifies the dual
approach: measuring thread and tracing.
Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com
Cc: Phil Auld <pauld@redhat.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Kate Carcia <kcarcia@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexandre Chartre <alexandre.chartre@oracle.com>
Cc: Clark Willaims <williams@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
[
Made the following functions static:
trace_irqentry_callback()
trace_irqexit_callback()
trace_intel_irqentry_callback()
trace_intel_irqexit_callback()
Added to include/trace.h:
osnoise_arch_register()
osnoise_arch_unregister()
Fixed define logic for LATENCY_FS_NOTIFY
Reported-by: kernel test robot <lkp@intel.com>
]
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
The func_repeats event shows the output of the function tracer followed by
a count of the number of repeats the previous function had made, as well
as the timestamp of the last function that was repeated.
The printing of the function should be the same as is for the function it
is displaying. Reuse the code in trace_fn_trace() by making a helper
function print_fn_trace() and use it for trace_func_repeats_print().
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
The event aims to consolidate the function tracing record in the cases
when a single function is called number of times consecutively.
while (cond)
do_func();
This may happen in various scenarios (busy waiting for example).
The new ftrace event can be used to show repeated function events with
a single event and save space on the ring buffer
Link: https://lkml.kernel.org/r/20210415181854.147448-3-y.karadz@gmail.com
Signed-off-by: Yordan Karadzhov (VMware) <y.karadz@gmail.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
The part of the code that prints the time of the trace record in
"int trace_print_context()" gets extracted in a static function. This
is done as a preparation for a following patch, in which we will define
a new ftrace event called "func_repeats". The new static method,
defined here, will be used by this new event to print the time of the
last repeat of a function that is consecutively called number of times.
Link: https://lkml.kernel.org/r/20210415181854.147448-2-y.karadz@gmail.com
Signed-off-by: Yordan Karadzhov (VMware) <y.karadz@gmail.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
It is a common mistake for someone writing a trace event to save a pointer
to a string in the TP_fast_assign() and then display that string pointer
in the TP_printk() with %s. The problem is that those two events may happen
a long time apart, where the source of the string may no longer exist.
The proper way to handle displaying any string that is not guaranteed to be
in the kernel core rodata section, is to copy it into the ring buffer via
the __string(), __assign_str() and __get_str() helper macros.
Add a check at run time while displaying the TP_printk() of events to make
sure that every %s referenced is safe to dereference, and if it is not,
trigger a warning and only show the address of the pointer, and the
dereferenced string if it can be safely retrieved with a
strncpy_from_kernel_nofault() call.
In order to not have to copy the parsing of vsnprintf() formats, or even
exporting its code, the verifier relies on vsnprintf() being able to
modify the va_list that is passed to it, and it remains modified after it
is called. This is the case for some architectures like x86_64, but other
architectures like x86_32 pass the va_list to vsnprintf() as a value not a
reference, and the verifier can not use it to parse the non string
arguments. Thus, at boot up, it is checked if vsnprintf() modifies the
passed in va_list or not, and a static branch will disable the verifier if
it's not compatible.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
To help debugging kernel, show real address for trace event arguments
in tracefs/trace{,pipe} instead of hashed pointer value.
Since ftrace human-readable format uses vsprintf(), all %p are
translated to hash values instead of pointer address.
However, when debugging the kernel, raw address value gives a
hint when comparing with the memory mapping in the kernel.
(Those are sometimes used with crash log, which is not hashed too)
So converting %p with %px when calling trace_seq_printf().
Moreover, this is not improving the security because the tracefs
can be used only by root user and the raw address values are readable
from tracefs/percpu/cpu*/trace_pipe_raw file.
Link: https://lkml.kernel.org/r/160277370703.29307.5134475491761971203.stgit@devnote2
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
This adds CONFIG_FTRACE_RECORD_RECURSION that will record to a file
"recursed_functions" all the functions that caused recursion while a
callback to the function tracer was running.
Link: https://lkml.kernel.org/r/20201106023548.102375687@goodmis.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Guo Ren <guoren@kernel.org>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Anton Vorontsov <anton@enomsg.org>
Cc: Colin Cross <ccross@android.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Miro |