// SPDX-License-Identifier: GPL-2.0-only
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/export.h>
#include <linux/cpu.h>
#include <linux/debugfs.h>
#include <linux/sched/smt.h>
#include <linux/task_work.h>
#include <linux/mmu_notifier.h>
#include <asm/tlbflush.h>
#include <asm/mmu_context.h>
#include <asm/nospec-branch.h>
#include <asm/cache.h>
#include <asm/cacheflush.h>
#include <asm/apic.h>
#include <asm/perf_event.h>
#include "mm_internal.h"
#ifdef CONFIG_PARAVIRT
# define STATIC_NOPV
#else
# define STATIC_NOPV static
# define __flush_tlb_local native_flush_tlb_local
# define __flush_tlb_global native_flush_tlb_global
# define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr)
# define __flush_tlb_multi(msk, info) native_flush_tlb_multi(msk, info)
#endif
/*
* TLB flushing, formerly SMP-only
* c/o Linus Torvalds.
*
* These mean you can really definitely utterly forget about
* writing to user space from interrupts. (Its not allowed anyway).
*
* Optimizations Manfred Spraul <manfred@colorfullife.com>
*
* More scalable flush, from Andi Kleen
*
* Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
*/
/*
* Bits to mangle the TIF_SPEC_* state into the mm pointer which is
* stored in cpu_tlb_state.last_user_mm_spec.
*/
#define LAST_USER_MM_IBPB 0x1UL
#define LAST_USER_MM_L1D_FLUSH 0x2UL
#define LAST_USER_MM_SPEC_MASK (LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
/* Bits to set when tlbstate and flush is (re)initialized */
#define LAST_USER_MM_INIT LAST_USER_MM_IBPB
/*
* The x86 feature is called PCID (Process Context IDentifier). It is similar
* to what is traditionally called ASID on the RISC processors.
*
* We don't use the traditional ASID implementation, where each process/mm gets
* its own ASID and flush/restart when we run out of ASID space.
*
* Instead we have a small per-cpu array of ASIDs and cache the last few mm's
* that came by on this CPU, allowing cheaper switch_mm between processes on
* this CPU.
*
* We end up with different spaces for different things. To avoid confusion we
* use different names for each of them:
*
* ASID - [0, TLB_NR_DYN_ASIDS-1]
* the canonical identifier for an mm
*
* kPCID - [1, TLB_NR_DYN_ASIDS]
* the value we write into the PCID part of CR3; corresponds to the
* ASID+1, because PCID 0 is special.
*
* uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
* for KPTI each mm has two address spaces and thus needs two
* PCID values, but we can still do with a single ASID denomination
* for each mm. Corresponds to kPCID + 2048.
*
*/
/* There are 12 bits of space for ASIDS in CR3 */
#define CR3_HW_ASID_BITS 12
/*
* When enabled, MITIGATION_PAGE_TABLE_ISOLATION consumes a single bit for
* user/kernel switches
*/
#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
# define PTI_CONSUMED_PCID_BITS 1
#else
# define PTI_CONSUMED_PCID_BITS 0
#endif
#define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
/*
* ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account
* for them being zero-based. Another -1 is because PCID 0 is reserved for
* use by non-PCID-aware users.
*/
#define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
/*
* Given @asid, compute kPCID
*/
static inline u16 kern_pcid(u16 asid)
{
VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
/*
* Make sure that the dynamic ASID space does not conflict with the
* bit we are using to switch between user and kernel ASIDs.
*/
BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
/*
* The ASID being passed in here should have respected the
* MAX_ASID_AVAILABLE and thus never have the switch bit set.
*/
VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
#endif
/*
* The dynamically-assigned ASIDs that get passed in are small
* (<TLB_NR_DYN_ASIDS). They never have the high switch bit set,
* so do not bother to clear it.
*
* If PCID is on, ASID-aware code paths put the ASID+1 into the
* PCID bits. This serves two purposes. It prevents a nasty
* situation in which PCID-unaware code saves CR3, loads some other
* value (with PCID == 0), and then restores CR3, thus corrupting
* the TLB for ASID 0 if the saved ASID was nonzero. It also means
* that any bugs involving loading a PCID-enabled CR3 with
* CR4.PCIDE off will trigger deterministically.
*/
return asid + 1;
}
/*
* Given @asid, compute uPCID
*/
static inline u16 user_pcid(u16 asid