/*
* SPDX-License-Identifier: MIT
*
* Copyright © 2014-2016 Intel Corporation
*/
#include <linux/anon_inodes.h>
#include <linux/mman.h>
#include <linux/pfn_t.h>
#include <linux/sizes.h>
#include <drm/drm_cache.h>
#include "gt/intel_gt.h"
#include "gt/intel_gt_requests.h"
#include "i915_drv.h"
#include "i915_gem_evict.h"
#include "i915_gem_gtt.h"
#include "i915_gem_ioctls.h"
#include "i915_gem_object.h"
#include "i915_gem_mman.h"
#include "i915_mm.h"
#include "i915_trace.h"
#include "i915_user_extensions.h"
#include "i915_gem_ttm.h"
#include "i915_vma.h"
static inline bool
__vma_matches(struct vm_area_struct *vma, struct file *filp,
unsigned long addr, unsigned long size)
{
if (vma->vm_file != filp)
return false;
return vma->vm_start == addr &&
(vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
}
/**
* i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
* it is mapped to.
* @dev: drm device
* @data: ioctl data blob
* @file: drm file
*
* While the mapping holds a reference on the contents of the object, it doesn't
* imply a ref on the object itself.
*
* IMPORTANT:
*
* DRM driver writers who look a this function as an example for how to do GEM
* mmap support, please don't implement mmap support like here. The modern way
* to implement DRM mmap support is with an mmap offset ioctl (like
* i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
* That way debug tooling like valgrind will understand what's going on, hiding
* the mmap call in a driver private ioctl will break that. The i915 driver only
* does cpu mmaps this way because we didn't know better.
*/
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_private *i915 = to_i915(dev);
struct drm_i915_gem_mmap *args = data;
struct drm_i915_gem_object *obj;
unsigned long addr;
/*
* mmap ioctl is disallowed for all discrete platforms,
* and for all platforms with GRAPHICS_VER > 12.
*/
if (IS_DGFX(i915) || GRAPHICS_VER_FULL(i915) > IP_VER(12, 0))
return -EOPNOTSUPP;
if (args->flags & ~(I915_MMAP_WC))
return -EINVAL;
if (args->flags & I915_MMAP_WC && !pat_enabled())
return -ENODEV;
obj = i915_gem_object_lookup(file, args->handle);
if (!obj)
return -ENOENT;
/* prime objects have no backing filp to GEM mmap
* pages from.
*/
if (!obj->base.filp) {
addr = -ENXIO;
goto err;
}
if (range_overflows(args->offset, args->size, (u64)obj->base.size)) {
addr = -EINVAL;
goto err;
}
addr = vm_mmap(obj->base.filp, 0, args->size,
PROT_READ | PROT_WRITE, MAP_SHARED,
args->offset);
if (IS_ERR_VALUE(addr))
goto err;
if (args->flags & I915_MMAP_WC) {
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
if (mmap_write_lock_killable(mm)) {
addr = -EINTR;
goto err;
}
vma = find_vma(mm, addr);
if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
vma->vm_page_prot =
pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
else
addr = -ENOMEM;
mmap_write_unlock(mm);
if (IS_ERR_VALUE(addr))
goto err;
}
i915_gem_object_put(obj);
args->addr_ptr = (u64)addr;
return 0;
err:
i915_gem_object_put(obj);
return addr;
}
static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
{
return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
}
/**
* i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
*
* A history of the GTT mmap interface:
*
* 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
* aligned and suitable for fencing, and still fit into the available
* mappable space left by the pinned display objects. A classic problem
* we called the page-fault-of-doom where we would ping-pong between
* two objects that could not fit inside the GTT and so the memcpy
* would page one object in at the expense of the other between every
* single byte.
*
* 1 - Objects can be any size, and have any compatible fencing (X Y, or none
* as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
* object is too large for the available space (or simply too large
* for the mappable aperture!), a view is created instead and faulted
* into userspace. (This view is aligned and sized appropriately for
* fenced access.)
*
* 2 - Recognise WC as a separate cache domain so that we can flush the
* delayed writes via GTT before performing direct access via WC.
*
* 3 - Remove implicit set-domain(GTT) and synchronisation on initial
* pagefault; swapin remains transparent.
*
* 4 - Support multiple fault handlers per object depending on object's
* backing storage (a.k.a. MMAP_OFFSET).
*
* Restrictions: