/*
* Copyright © 2013 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Brad Volkin <bradley.d.volkin@intel.com>
*
*/
#include "i915_drv.h"
/**
* DOC: batch buffer command parser
*
* Motivation:
* Certain OpenGL features (e.g. transform feedback, performance monitoring)
* require userspace code to submit batches containing commands such as
* MI_LOAD_REGISTER_IMM to access various registers. Unfortunately, some
* generations of the hardware will noop these commands in "unsecure" batches
* (which includes all userspace batches submitted via i915) even though the
* commands may be safe and represent the intended programming model of the
* device.
*
* The software command parser is similar in operation to the command parsing
* done in hardware for unsecure batches. However, the software parser allows
* some operations that would be noop'd by hardware, if the parser determines
* the operation is safe, and submits the batch as "secure" to prevent hardware
* parsing.
*
* Threats:
* At a high level, the hardware (and software) checks attempt to prevent
* granting userspace undue privileges. There are three categories of privilege.
*
* First, commands which are explicitly defined as privileged or which should
* only be used by the kernel driver. The parser generally rejects such
* commands, though it may allow some from the drm master process.
*
* Second, commands which access registers. To support correct/enhanced
* userspace functionality, particularly certain OpenGL extensions, the parser
* provides a whitelist of registers which userspace may safely access (for both
* normal and drm master processes).
*
* Third, commands which access privileged memory (i.e. GGTT, HWS page, etc).
* The parser always rejects such commands.
*
* The majority of the problematic commands fall in the MI_* range, with only a
* few specific commands on each engine (e.g. PIPE_CONTROL and MI_FLUSH_DW).
*
* Implementation:
* Each engine maintains tables of commands and registers which the parser
* uses in scanning batch buffers submitted to that engine.
*
* Since the set of commands that the parser must check for is significantly
* smaller than the number of commands supported, the parser tables contain only
* those commands required by the parser. This generally works because command
* opcode ranges have standard command length encodings. So for commands that
* the parser does not need to check, it can easily skip them. This is
* implemented via a per-engine length decoding vfunc.
*
* Unfortunately, there are a number of commands that do not follow the standard
* length encoding for their opcode range, primarily amongst the MI_* commands.
* To handle this, the parser provides a way to define explicit "skip" entries
* in the per-engine command tables.
*
* Other command table entries map fairly directly to high level categories
* mentioned above: rejected, master-only, register whitelist. The parser
* implements a number of checks, including the privileged memory checks, via a
* general bitmasking mechanism.
*/
#define STD_MI_OPCODE_SHIFT (32 - 9)
#define STD_3D_OPCODE_SHIFT (32 - 16)
#define STD_2D_OPCODE_SHIFT (32 - 10)
#define STD_MFX_OPCODE_SHIFT (32 - 16)
#define MIN_OPCODE_SHIFT 16
#define CMD(op, opm, f, lm, fl, ...) \
{ \
.flags = (fl) | ((f) ? CMD_DESC_FIXED : 0), \
.cmd = { (op), ~0u << (opm) }, \
.length = { (lm) }, \
__VA_ARGS__ \
}
/* Convenience macros to compress the tables */
#define SMI STD_MI_OPCODE_SHIFT
#define S3D STD_3D_OPCODE_SHIFT
#define S2D STD_2D_OPCODE_SHIFT
#define SMFX STD_MFX_OPCODE_SHIFT
#define F true
#define S CMD_DESC_SKIP
#define R CMD_DESC_REJECT
#define W CMD_DESC_REGISTER
#define B CMD_DESC_BITMASK
#define M CMD_DESC_MASTER
/* Command Mask Fixed Len Action
---------------------------------------------------------- */
static const struct drm_i915_cmd_descriptor common_cmds[] = {
CMD( MI_NOOP, SMI, F, 1, S ),
CMD( MI_USER_INTERRUPT, SMI, F, 1, R ),
CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, M ),
CMD( MI_ARB_CHECK, SMI, F, 1, S ),
CMD( MI_REPORT_HEAD, SMI, F, 1, S