// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2015, Sony Mobile Communications AB.
* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
*/
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/mailbox_client.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/sched.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/soc/qcom/smem.h>
#include <linux/wait.h>
#include <linux/rpmsg.h>
#include <linux/rpmsg/qcom_smd.h>
#include "rpmsg_internal.h"
/*
* The Qualcomm Shared Memory communication solution provides point-to-point
* channels for clients to send and receive streaming or packet based data.
*
* Each channel consists of a control item (channel info) and a ring buffer
* pair. The channel info carry information related to channel state, flow
* control and the offsets within the ring buffer.
*
* All allocated channels are listed in an allocation table, identifying the
* pair of items by name, type and remote processor.
*
* Upon creating a new channel the remote processor allocates channel info and
* ring buffer items from the smem heap and populate the allocation table. An
* interrupt is sent to the other end of the channel and a scan for new
* channels should be done. A channel never goes away, it will only change
* state.
*
* The remote processor signals it intent for bring up the communication
* channel by setting the state of its end of the channel to "opening" and
* sends out an interrupt. We detect this change and register a smd device to
* consume the channel. Upon finding a consumer we finish the handshake and the
* channel is up.
*
* Upon closing a channel, the remote processor will update the state of its
* end of the channel and signal us, we will then unregister any attached
* device and close our end of the channel.
*
* Devices attached to a channel can use the qcom_smd_send function to push
* data to the channel, this is done by copying the data into the tx ring
* buffer, updating the pointers in the channel info and signaling the remote
* processor.
*
* The remote processor does the equivalent when it transfer data and upon
* receiving the interrupt we check the channel info for new data and delivers
* this to the attached device. If the device is not ready to receive the data
* we leave it in the ring buffer for now.
*/
struct smd_channel_info;
struct smd_channel_info_pair;
struct smd_channel_info_word;
struct smd_channel_info_word_pair;
static const struct rpmsg_endpoint_ops qcom_smd_endpoint_ops;
#define SMD_ALLOC_TBL_COUNT 2
#define SMD_ALLOC_TBL_SIZE 64
/*
* This lists the various smem heap items relevant for the allocation table and
* smd channel entries.
*/
static const struct {
unsigned alloc_tbl_id;
unsigned info_base_id;
unsigned fifo_base_id;
} smem_items[SMD_ALLOC_TBL_COUNT] = {
{
.alloc_tbl_id = 13,
.info_base_id = 14,
.fifo_base_id = 338
},
{
.alloc_tbl_id = 266,
.info_base_id = 138,
.fifo_base_id = 202,
},
};
/**
* struct qcom_smd_edge - representing a remote processor
* @dev: device associated with this edge
* @name: name of this edge
* @of_node: of_node handle for information related to this edge
* @edge_id: identifier of this edge
* @remote_pid: identifier of remote processor
* @irq: interrupt for signals on this edge
* @ipc_regmap: regmap handle holding the outgoing ipc register
* @ipc_offset: offset within @ipc_regmap of the register for ipc
* @ipc_bit: bit in the register at @ipc_offset of @ipc_regmap
* @mbox_client: mailbox client handle
* @mbox_chan: apcs ipc mailbox channel handle
* @channels: list of all channels detected on this edge
* @channels_lock: guard for modifications of @channels
* @allocated: array of bitmaps representing already allocated channels
* @smem_available: last available amount of smem triggering a channel scan
* @new_channel_event: wait queue for new channel events
* @scan_work: work item for discovering new channels
* @state_work: work item for edge state changes
*/
struct qcom_smd_edge {
struct device dev;
const char *name;
struct device_node *of_node;
unsigned edge_id;
unsigned remote_pid;
int irq;
struct regmap *ipc_regmap;
int ipc_offset;
int ipc_bit;
struct mbox_client mbox_client;
struct mbox_chan *mbox_chan;
struct list_head channels;
spinlock_t channels_lock;
DECLARE_BITMAP(allocated[SMD_ALLOC_TBL_COUNT], SMD_ALLOC_TBL_SIZE);
unsigned smem_available;
wait_queue_head_t new_channel_event;
struct work_struct scan_work;
struct work_struct state_work;
};
/*
* SMD channel states.
*/
enum smd_channel_state {
SMD_CHANNEL_CLOSED,
SMD_CHANNEL_OPENING,
SMD_CHANNEL_OPENED,
SMD_CHANNEL_FLUSHING,
SMD_CHANNEL_CLOSING,
SMD_CHANNEL_RESET,
SMD_CHANNEL_RESET_OPENING
};
struct qcom_smd_device {
struct rpmsg_device rpdev;
struct qcom_smd_edge *edge;
};
struct qcom_smd_endpoint {
struct rpmsg_endpoint ept;
struct qcom_smd_channel *qsch;
};
#define to_smd_device(r) container_of(r, struct qcom_smd_device, rpdev)
#define to_smd_edge(d) container_of(d, struct qcom_smd_edge, dev)
#define to_smd_endpoint(e) container_of
|