// SPDX-License-Identifier: Apache-2.0 OR MIT
//! API to safely and fallibly initialize pinned `struct`s using in-place constructors.
//!
//! It also allows in-place initialization of big `struct`s that would otherwise produce a stack
//! overflow.
//!
//! Most `struct`s from the [`sync`] module need to be pinned, because they contain self-referential
//! `struct`s from C. [Pinning][pinning] is Rust's way of ensuring data does not move.
//!
//! # Overview
//!
//! To initialize a `struct` with an in-place constructor you will need two things:
//! - an in-place constructor,
//! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`],
//! [`UniqueArc<T>`], [`Box<T>`] or any other smart pointer that implements [`InPlaceInit`]).
//!
//! To get an in-place constructor there are generally three options:
//! - directly creating an in-place constructor using the [`pin_init!`] macro,
//! - a custom function/macro returning an in-place constructor provided by someone else,
//! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer.
//!
//! Aside from pinned initialization, this API also supports in-place construction without pinning,
//! the macros/types/functions are generally named like the pinned variants without the `pin`
//! prefix.
//!
//! # Examples
//!
//! ## Using the [`pin_init!`] macro
//!
//! If you want to use [`PinInit`], then you will have to annotate your `struct` with
//! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for
//! [structurally pinned fields]. After doing this, you can then create an in-place constructor via
//! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is
//! that you need to write `<-` instead of `:` for fields that you want to initialize in-place.
//!
//! ```rust
//! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
//! use kernel::{prelude::*, sync::Mutex, new_mutex};
//! # use core::pin::Pin;
//! #[pin_data]
//! struct Foo {
//! #[pin]
//! a: Mutex<usize>,
//! b: u32,
//! }
//!
//! let foo = pin_init!(Foo {
//! a <- new_mutex!(42, "Foo::a"),
//! b: 24,
//! });
//! ```
//!
//! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like
//! (or just the stack) to actually initialize a `Foo`:
//!
//! ```rust
//! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
//! # use kernel::{prelude::*, sync::Mutex, new_mutex};
//! # use core::pin::Pin;
//! # #[pin_data]
//! # struct Foo {
//! # #[pin]
//! # a: Mutex<usize>,
//! # b: u32,
//! # }
//! # let foo = pin_init!(Foo {
//! # a <- new_mutex!(42, "Foo::a"),
//! # b: 24,
//! # });
//! let foo: Result<Pin<Box<Foo>>> = Box::pin_init(foo);
//! ```
//!
//! For more information see the [`pin_init!`] macro.
//!
//! ## Using a custom function/macro that returns an initializer
//!
//! Many types from the kernel supply a function/macro that returns an initializer, because the
//! above method only works for types where you can access the fields.
//!
//! ```rust
//! # use kernel::{new_mutex, sync::{Arc, Mutex}};
//! let mtx: Result<Arc<Mutex<usize>>> = Arc::pin_init(new_mutex!(42, "example::mtx"));
//! ```
//!
//! To declare an init macro/function you just return an [`impl PinInit<T, E>`]:
//!
//! ```rust
//! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
//! # use kernel::{sync::Mutex, prelude::*, new_mutex, init::PinInit, try_pin_init};
//! #[pin_data]
//! struct DriverData {
//! #[pin]
//! status: Mutex<i32>,
//! buffer: Box<[u8; 1_000_000]>,
//! }
//!
//! impl DriverData {
//! fn new() -> impl PinInit<Self, Error> {
//! try_pin_init!(Self {
//! status <- new_mutex!(0, "DriverData::status"),
//! buffer: Box::init(kernel::init::zeroed())?,
//! })
//! }
//! }
//! ```
//!
//! ## Manual creation of an initializer
//!
//! Often when working with primitives the previous approaches are not sufficient. That is where
//! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a
//! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure
//! actually does the initialization in the correct way. Here are the things to look out for
//! (we are calling the parameter to the closure `slot`):
//! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so
//! `slot` now contains a valid bit pattern for the type `T`,
//! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so
//! you need to take care to clean up anything if your initialization fails mid-way,
//! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of
//! `slot` gets called.
//!
//! ```rust
//! # #![allow(unreachable_pub, clippy::disallowed_names)]
//! use kernel::{prelude::*, init, types::Opaque};
//! use core::{ptr::addr_of_mut, marker::PhantomPinned, pin::Pin};
//! # mod bindings {
//! # #![allow(non_camel_case_types)]
//! # pub struct foo;
//! # pub unsafe fn init_foo(_ptr: *mut foo) {}
//! # pub unsafe fn destroy_foo(_ptr: *mut foo) {}
//! # pub unsafe fn enable_foo(_ptr: *mut foo, _flags: u32) -> i32 { 0 }
//! # }
//! # // `Error::from_errno` is `pub(crate)` in the `kernel` crate, thus provide a workaround.
//! # trait FromErrno {
//! # fn from_errno(errno: core::ffi::c_int) -> Error {
//! # // Dummy error that can be constructed outside the `kernel` crate.
//! # Error::from(core::fmt::Error)
//! # }
//! # }
//! # impl FromErrno for Error {}
//! /// # Invariants
//! ///
//! /// `foo` is always initialized
//! #[pin_data(PinnedDrop)]
//! pub struct RawFoo {
//! #[pin]
//! foo: Opaque<bindings::foo>,
//! #[pin]
//! _p: PhantomPinned,
//! }
//!
//! impl RawFoo {
//! pub fn new(flags: u32) -> impl PinInit<Self, Error> {
//! // SAFETY:
//! // - when the closure returns `Ok(())`, then it has successfully initialized and
//! // enabled `foo`,
//! // - when it returns `Er